This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Hardware Accelerator for Probabilistic
Inference in 65-nm CMOS

Osama U. Khan, Student Member, IEEE, and David D. Wentzloff, Member, IEEE

Abstract— A hardware accelerator is presented to compute
the probabilistic inference for a Bayesian network (BN) in
distributed sensing applications. For energy efficiency, the
accelerator is operated at a near-threshold voltage of 0.5 V,
while achieving a maximum clock frequency of 33 MHz.
Clique-tree message passing algorithm is leveraged to compute
the probabilistic inference. The theoretical maximum size of a
factor that the proposed hardware accelerator can handle is
2(8x20)=160 o ¢ries, which is sufficient for handling massive BNs,
such as PATHFINDER, MUNIN, and so on (>1000 nodes).
A Logical Alarm Reduction Mechanism (ALARM) BN is used to
benchmark the performance of the accelerator. The accelerator
consumes 76 nJ to execute the ALARM network using a
clique-tree message-passing algorithm, while the same algorithm
executed on an ultralow-power microcontroller consumes 20 mJ.

Index Terms— Bayesian network (BN), clique-tree, embedded
machine learning, hardware accelerator, intelligent sensor node,
message passing, probabilistic graphical model, probabilistic
inference.

I. INTRODUCTION

HE evolution of microelectronics will continue, fueled

by Moore’s Law for semiconductors [1], and is entering
into a new era of ubiquitous connectivity enabled by
distributed and embedded intelligent electronics [2]. It is
envisioned that pervasive and smart sensors will surround
our environment. The scale at which the smart sensors are
expected to be deployed will generate massive amounts of
data for information and knowledge extraction [3], [4]. These
data can be processed on a cloud server, in a distributed smart
sensors’ network, or a hybrid approach can be taken where
some data are preprocessed in a resource-limited sensor
node, while other is off-loaded to a cloud server. Bayesian
networks (BNs) are gaining popularity for use in making fast
and intelligent decisions based on large sets of data, historical
information, and current inputs. They have widespread
cloud-based applications, including medicine, finance,
robotics, fault diagnosis, structural health monitoring, and
machine learning, and so on.

Manuscript received October 6, 2014; revised January 18, 2015 and
March 24, 2015; accepted March 31, 2015. This work was supported by
the National Science Foundation through the Signal Processing, Information
Technology Program under Award CCF-0910765.

O. U. Khan is with the Department of Electrical Engineering,
University of California at Berkeley, Berkeley, CA 94720 USA (e-mail:
oukhan @berkeley.edu).

D. D. Wentzloff is with the Department of Electrical Engineering, University
of Michigan, Ann Arbor, MI 48109 USA (e-mail: wentzlof @umich.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSIL.2015.2420663

With the advent of millimeter-scale computing [5],
millimeter-scale robots [6], and cloud-based cognitive
systems [7], it is just a matter of time before BNs are pushed
from the cloud into the nodes, finding use in new emerging
applications, e.g., security and biometric applications [8].
These miniature devices together with their cloud infrastruc-
ture will become far more capable and far more intelligent.
The BNs are prohibitively complex for implementing on
today’s energy-constrained sensor nodes, and more efficient
BN processing is desirable.

In this paper, we present a BN hardware accelerator to
compute probabilistic inference for distributed embedded elec-
tronics targeting energy-constrained applications. Many signal
processing algorithms can be represented as Bayesian prob-
abilistic networks, such as forward-backward algorithms [9],
the Viterbi algorithm, the iterative turbo-decoding algorithm,
Pearl’s belief propagation algorithm, and the Kalman filter
and certain fast Fourier transform algorithms [10]. There
is one previous attempt of implementing a BN based on
probabilistic CMOS (PCMOS) [11]. Two basic probabilities
are generated by PCMOS and a range of probabilities required
for probabilistic inference is derived from it. The proposed
architecture is not easily scalable for large networks and offers
limited precision for probabilistic computation, which can
affect the accuracy of the computed probabilistic inference
severely. A high-throughput Bayesian computing machine [12]
targeting high-performance designed on a field-programmable
gate array (FPGA) is presented and its performance is
extensively benchmarked against equivalent CPU and GPU
implementations. Although they were able to demonstrate
15x-80x performance improvement, such a Bayesian
machine is infeasible for energy constrained sensor nodes due
to their limited power budget. There have been some other
FPGA-based implementations of Bayesian classifier using
neural networks [13], [14] but suffers from the same drawback.
To the best of our knowledge, this is the first application spec-
ified integrated circuit (ASIC) implementation of computing a
probabilistic inference using conventional CMOS.

The inference algorithms are mainly divided into
two categories: 1) exact inference and 2) approximate
inference. We propose a hardware accelerator to run the exact
inference algorithms, namely, a clique-tree message passing
algorithm (a variant of a sum-product inference algorithm)
for BNs [15]. The clique-tree message-passing algorithm has
been chosen, as it can be very easily adapted for distributed
intelligent sensing across multiple nodes. The main advantage
being the network has a tree structure, where leaves represent

1063-8210 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

An Intelligent Node

Power Management

Accelerator for Embedded
Machine Learning

Knowledge (feature
extraction, classification etc.)
instead of raw sensor data

is wirelessly transmitted

uC

WW‘V_

Tx/Rx

Fig. 1. Sensor node exploiting embedded machine learning.

the sensor inputs, greatly simplifying the interconnect in a
large sensor network. Furthermore, only two messages are
passed along any branch in the tree, minimizing the wireless
traffic required between disjoint clusters of sensors that must
operate together in a BN. Therefore, a clique or a group of
cliques can be processed on a sensor node while message
passing to cliques processed on other sensor nodes can
be achieved over a wireless channel. Together the nodes
implementing a BN are capable of making a decision without
accessing the cloud.

It is known that the complexity of a BN grows exponentially
with the number of nodes in the network [15]. This can be
addressed by exploiting the hypothesis introduced by Pearl in
his classical paper [16], that a large BN can be subdivided into
smaller networks whose conditional probabilities are rather
manageable, and thus can be implemented in a resource
constrained sensor node in a distributed network.

A block diagram of a generic sensor node is shown in Fig. 1.
The Analog-to-Digital Converter and microcontroller have
energy efficiencies on the order of a picojoule per conversion
and a picojoule per instruction, respectively, but the wireless
communication, when active, is on the order of a nanojoule
per bit (1000x higher) [17]. Therefore, in a wireless sensor
network, it is often more energy-efficient to extract the useful
information from the data on the node rather than streaming
the raw sensor data to a cloud server for postprocessing.
The proposed clique-tree hardware accelerator is operated
at a near-threshold voltage for energy efficiency. A state-
machine-based design and a simple dedicated hardware based
on counters are used instead of relying on an Arithmetic
Logic Unit (ALU) to perform intensive index computations
required to execute the CT message-passing algorithm for
computing the probabilistic inference on-node. This results
in energy savings of >10° when compared with an ultralow-
power microcontroller implementation for A Logical Alarm
Reduction Mechanism (ALARM) network.

The rest of this paper is organized as follows. Section II
gives a brief background of the BN. Section III discusses
the factor operations required for inference computations.
Section IV discusses the proposed hardware accelerator in
detail. Section V discusses the measurement results. Finally,
the conclusion is drawn in Section VI.

II. BAYESIAN NETWORK

A BN is a probabilistic graphical model that represents a set
of random variables (RVs) and their conditional dependencies
via a directed (where the edges have a source and a target)
acyclic graph (graph with no loops) [15]. Fig. 2 shows a toy
BN example for a student [15]. The RVs in the network are

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Toy
Bayesian Network

@engenc)

Croter >

Clique Tree Mossage Jis passed to a neighboring clique for the shared variable(s).
for toy BN
6..(D): s ,(G.0): S,.4(G.5): 5..5(G,J):

Zcqﬂ((‘x.} ZD‘P:lC:]xci__,: Z;l{—‘_:((_'_:)% 854 Z_:._-TJ(.C-'}
[1:cp |—D>| 2:G1D |;>| 3:G6,8 |E>| 5: G,J,S,L|4E| 4:HGJ |

Toy BN example and its corresponding clique-tree.

Fig. 2.

difficulty of the course that a student undertakes, intelligence
of a student, the grade a student receives in a course, the
letter of recommendation a student receives, and so on. The
graphical model is a way to represent the prior knowledge
about the system under consideration using probabilities that
have been assigned to RVs in a network, which can be learned
either from past data or with the help of a domain expert [15].
The network can be queried for inferences based on observing
different RVs (sensor output). For example, given a student is
intelligent and the course is easy, what is the probability of
the student getting a job?

The corresponding clique-tree for the student BN example
is shown in Fig. 2 with a sample run of message passing [15].
Suppose we were to compute the probability of getting a job,
P(J). We first select our root clique; which is any clique that
contains variable J (e.g., Clique 5) and then execute message
passing toward the root Clique 5. In the clique-tree, Clique 1
sends a message d;—2(D) to a neighboring Clique 2 updating
it only for the shared RV D. Similarly Cliques 1-4 will send
messages to Clique 5. Clique 5 will multiply all the incoming
messages with its own factor and compute an updated belief
for the RVs G, J, S, L. If we now want to obtain P(J), we
simply sum out G, L, and S.

Fig. 3 shows a hypothetical complex BN example monitor-
ing the health of a person that can make intelligent decisions
based on prior-knowledge of the subject and fusing it with the
updated knowledge from the sensors. A clique-tree message-
passing algorithm is exploited for distributed intelligent sens-
ing.

The clique-tree message passing algorithm requires an
upward message passing and a downward message passing in
a clique-tree Fig. 4. After an upward and downward message
passing, the posterior probabilities of all the variables in a
graph can be computed [15].

III. INFERENCE OPERATIONS

The basic data structure used in a probabilistic BN is
a factor. A factor is a data structure used to represent
probabilities [15]. For instance, a factor with two RVs A and B

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KHAN AND WENTZLOFF: HARDWARE ACCELERATOR FOR PROBABILISTIC INFERENCE IN 65-nm CMOS

Distributed Intelligent Sensing

. Embedded accelerator can process
|'\I the entire BN or a sub-part of it.

Hypothetical complex BN monitoring human physiology
for intelligent need-based sensing.

Fig. 3. Clique-tree algorithm for distributed intelligent sensing.
ParentO Upward message < Algorithm is converged
¢ passing liques after upward & downward
message passing. The
accelerator is configured
Tree | to process each clique

sequentially.

Downward message
passing

Converted offline
é f/hild

ALARM Bayesian Network ALARM Clique-tree (Subset)
(Subset)

Fig. 4. Offline clique-tree generation and message passing for ALARM BN.

®1(A,B)
ail b1 0.5
ail b2 0.8
a2 b1 0.1
a2 b2 0
a3 b1 0.3
a3 b2 0.9

Fig. 5. Factor with RVs A and B.

and their corresponding probabilities is shown in Fig. 5 [15].
The RV A has cardinality 3 and RV B has cardinality 2.
A factor or multidimensional table with an entry for each
possible assignment to the RVs is stored as a flattened single
array in the memory.

Various factor operations are required to execute the
exact inference algorithms, namely, factor product, factor
marginalization, factor reduction, and factor normalization.
The clique-tree algorithm shown in Fig. 3 requires message
computation. Each message computation at most requires
factor product operation with incoming messages, factor
marginalization operation on the resulting factor product, and
factor normalization operation. We will now briefly illustrate
these operations with simple examples.

In a factor product operation, two factors are multiplied to
produce a third factor, mathematically described by (1) and
shown in Fig. 6 [15]. Since factors 1 and 2 share a common
RV B, the row 1 of factor)1 needs to be multiplied with all
the rows of factor 2 containing the same value b1 of RV B,
which in this example is rows 1 and 2. Similarly, other rows
are being computed

#3(A, B,C) = #1(A, B) * 92(B, C). (1)

Factor marginalization is a process that produces a
probability distribution by extracting a subset from a larger

D1(AB) ®2(B,C)
a1 b1 05 b1 c1 05
al b2 0.8 b1 c2 0.7
a2 b1 0.1 b2 c1 0.1
a2 b2 0 b2 c2 0.2
a3 b1 03
a3 b2 0.9
®3(A,B,C)
al b1 o1 0.5%0.5=0.25
al b1 2]0.5*0.7=0.35]
al b2 o1 0.8%0.1=0.08
al b2 c2 _ [0.10.2=0.16
a2 b1 c1 0.170.5=0.05
a2 b1 c2 0.1°0.7=0.07
a2 b2 o1 0%0.1=0
a2 b2 c2 0*0.2=0
a3 b1 c1 0.3*0.5=0.15
a3 b1 c2 _ 10.3*0.7=0.21
a3 b2 c1 0.9%0.1=0.09
a3 b2 2]0.9%0.2=0.18
Fig. 6. Factor product.
®3(AB,C)
al b1 o1 [0.5%0.5=0.25
a1 b1 2 [05%0.7=0.35 P4(AC)
al b2 cl 0.8"0.1=0.08 Y] e 05
al b2 2 10.170.2=0.16 a1 2 08
a2 b1 c1___]0.1°0.5=0.05 2 o 01
a2 b1 c2 0.1%0.7=0.07 % a2 c2 0
a2 b2 ot 0%0.1=0
3 1 03
a2 b2 2 00220 o o 0o
a3 b1 c1 0.3°0.5=0.15 *
a3 b1 2 10.3"0.7=0.21
a3 b2 ¢l 10.9%0.1=0.09
a3 b2 2]0.90.2=0.18
Fig. 7. Factor marginalization.
®3(AB,C)
al b1 c1 0.25
a b1 c2 0.35
a b2 ct 0.08 ®5(A,B,C)
a b2 c2 0.16
22 b of 005 2 -
a2 b1 c2 0.07 —> a2 b1 cl 0.05
a2 b2 ct 0 a2 b2 ct 0
a2 b2 c2 0 a3 b1 cl 0.15
o3 g pr 015 a3 b2 ct 0.09
a3 b1 c2 0.21
a3 b2 c1 0.09
a3 b2 c2 0.18
Fig. 8. Factor reduction.

probability distribution by eliminating some of the RVs,
e.g., 9(X) = D>y #(X,Y). This operation is called summing
out of Y in ¥ and is shown in Fig. 7 [15]. In Fig. 7, we are
marginalizing RV B in factor #3, so the resultant factor ¥4
contains RVs A and C. The first row of (4 is computed by
summing all the rows of J3 containing the same values for RVs
A and C, i.e., al and cl, respectively, which are rows 1 and 3
in #3. In a similar manner all other rows are being computed.

Factor reduction is a process, which makes the probability
distribution consistent with current observations, i.e., with
evidence or updated sensor values. Fig. 8 shows a simple
factor reduction operation [15]. If for example value cl has
been observed for a RV C, all the rows in factor 3 containg
value ¢2 for RV C have been eliminated in factor #5.

The factor normalization operation makes sure that the
resulting factor, from factor operations described above, is a
valid probability density function by scaling it with a non-
negative value. This is accomplished by computing a running
sum of each entry in a factor and dividing it with the total
cumulative sum.

IV. HARDWARE ACCELERATOR

A simplified block diagram of the hardware accelerator is
shown in Fig. 9. The accelerator can be configured to perform

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

| Scan Chain 10 |
4 { +]
" . . Assignment
Configuration FSM Assignment
Table controller Generation to Ind_ex
Mapping
RF
(Register File)
Factor LUT Factor Factor
Normalization ﬁ Log-Log ” Marginalization Product
B=B-}B Addition Sv@®(X,Y) C=A+B
Fig. 9. Simplified block diagram for the hardware accelerator.

Configuration Tabl
onfiguration Table Random Variables(RV) Mask

239 Cardinality of RV[19] | [br] [bs [bo]
231 |
7‘9 Cardinality of RV[0] RV[7] RV[1] RV[0]
Random Variables(RV) Mask Marginalization
7 Random Variables(RV) Mask Marginalization Node configuration
63 —Random Variables(RV) Mask Marginalization by bo
ig Random Variables(RV) Mask Factor B 00 | Factor Product
39 Random Var!ables(RV) Mask Factor B 011 Factor Marginalizaion
31 Random Variables(RV) Mask Factor B i
23 Random Variables(RV) Mask Factor A 1|0 | Factor Normalization
15 Random Variables(RV) Mask Factor A Cumulative Sum
7 Random Variables(RV) Mask Factor A 101 Factor Normalization
0 Node configuration Scaling

Fig. 10. Configuration table.

any of the factor operations described in Section III using a
configuration table (CT) Fig. 10. The CT consists of 30 8-bit
registers. The first two bits by, bg of the node configuration
register are used to configure the hardware accelerator in any
of the four factor operations mode, as shown in Fig. 10.
The hardware accelerator can operate on two factors at a
time. To avoid confusion, we call these factors Factor A and
Factor B. There are three 8-bit registers that define a RV mask
for Factor A, Factor B, and marginalization.

The hardware accelerator can support a factor with a
maximum 20 RVs each having maximum cardinality of 256.
The number of RVs present in a factor is defined using
the RV mask register. To support 20 RVs a 20-bit mask
register is used. For example, a factor 1 shown in Fig. 6 has
RVs A and B, while factor 2 has variables B and C. The
RVs are mapped to the mask register. The first three bits of
the mask register RV[0], RV[1], and RV[2] can be mapped to
RVs C, B, and A, respectively, (Fig. 10). Then, the RV Mask
registers for 1 (Factor A) and ¢J2 (Factor B) would have hex
value 0 x 00006 and 0 x 00003, respectively. The cardinality
of each RV is defined in 20 8-bit registers (since maximum
of 20 RVs are supported in a factor) in the CT. In the above
example, the cardinality of RV[0] register (corresponding
to RV C) would have value 2, the cardinality of RV[1] and the
cardinality of RV[2] registers (corresponding to RVs B and A)
would have values 2 and 3, respectively. This information is
used later on to generate the appropriate index for various
factor operations.

One of the most computationally intensive tasks is indexing
the appropriate entries in the linear array in memory for each
factor operation. Computing the memory index for a given

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Cardinality[0]
$ 8-bit

| counter{0] |—>| counter[1] '—V ° ° °
$S-bit i 8-bit

i Assignment[0]=C
i Assignment[1]=B
i Assignment[2]=A

Cardinality[1]
8-bit

Cardinality[19]
i 8-bit

counter{19]

8-bit

w
o

NN 2 2 soooo >

Fig. 11. On-the-fly assignment generation for factor operations.

factor operation can be computationally intensive [15] and
for this reason index computation is done using a dedicated
functional unit. Index computation for a given factor operation
requires assignment generation. An assignment for a RV can
be thought of as its state. For example, RV A has cardinality 3
so its possible assignments (state) are al, a2, and a3.

The assignment generation module in Fig. 9 reads RV mask
Factor A registers and the cardinality of RV registers from
the CT to determine how many RVs are currently in use
from the mask register and the cardinality of an each RV.
This information is used to generate assignment for each RV.
The assignments are generated in hardware on the fly. This is
accomplished by 20 cascaded counters (for maximum 20 RVs),
where each counter is counting up to the cardinality of the
corresponding RV, as shown in Fig. 11. The RV mask register
is used to enable the appropriate number of counters. For the
factor product example in Fig. 6, a sample run of assignment
generation is also shown in Fig. 11. Counter[0] is counting
up to the cardinality of RV[0] (mapped to RV C) which
is 2, counter[1] is counting up to the cardinality of RV[1]
(mapped to RV B) which is 2 and counter[3] is counting up
to the cardinality of RV[2] (mapped to RV A) which is 3.
In this way the assignments for RVs in factor ¢3 are generated
and the assignments of RVs in factor ¢1 and ¢2 are derived
from it for index computation, which will be described in
detail shortly.

The assignment to the index mapping block in Fig. 9
computes the stride (step size) of an RV in a factor on the fly.
For example, as shown in Fig. 11, the factor ¢3 has variables
A, B, and C with cardinalities 3,2, and 2 and their stride
would be 4, 2, and 1, respectively. If we add another RV D
then its stride would be 12 [15]. This is computed in hardware
as is shown in Fig. 12 for only two RVs out of the supported
20 for simplicity. The assignment to the index mapping block
reads in the RV mask Factor A registers and the cardinality of
RV registers from the configuration table. The mask register
bits drive the sel signal of the multiplexers in Fig. 12. The
stride[0] for the first RV[0] is by definition 1. The stride[1]
for the second RV[1] is equal to the cardinality of the first
RV (cardinality[0]) if it is used in the current factor operation
otherwise its cardinality is by-passed through a multiplexer
and stride[1] is assigned a value 1. Similarly, stride[2] for the
third RV[2] is equal to the product of the cardinality of the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KHAN AND WENTZLOFF: HARDWARE ACCELERATOR FOR PROBABILISTIC INFERENCE IN 65-nm CMOS 5

8-bit
32-bit

- stride[1]
Cardinality[0] ——«
8-bit

A_n
|

32-bit

RV[0] Multiplier |—4— stride[2]
8-bit
1——4)o
Cardinality[1] 75?1 8-bit
-bi
RV[1]
Fig. 12. Stride computation.
32-bit
32-bit 07 32-pit
stride[0]———]
Multiplier 1
Assignment[0] —4— 32-bit .
8-bit Adder 32-pit
32-bitRV[0] Index
32-bit 0——p 32-bit
stride[1]—4—
Multiplier 1
Assignment[1]—*“—| 32-bit /(
8-bit RV[1]
Fig. 13. Index computation.
6-bit data
L1 [fo | bs[ba ba by [b1 o
o Evidence flag is
Marginalization/ set if the state has
Normalization flag been observed.
Fig. 14. 8-bit memory word structure.

second RV and the stride[1]. This way stride for RV C is
computed as 1 (by definition), RV B is computed as 2
(cardinality of RV C), and RV A as 4 (product of stride of
RV B and cardinality of B).

The assignment to index mapping block uses the assignment
and stride information of each RV and converts it into an
appropriate index using [15]

index = Z assignment[i] * stride[i]. 2)
1

Fig. 13 shows the hardware implementation illustrating only
two RVs out of the supported 20 for simplicity. The mask
register bits drive the sel signals of the multiplexers. If a
RV is not used in a current factor operation its cardinality
is not considered for the index computation. For example, to
compute the index of row 10 of factor ¢3 in Fig. 6 with the
assignment for RVs A, B, and C of a3, bl, ¢2 is computed
using (2) as 2%4)+ (0*2)+ (1 x1)=09.

The register file in Fig. 9 consists of 8-bit memory word
whose structure is shown in Fig. 14. Six-bit of data stores
the probability data value while two flags bits fy and f; are
used for factor operations. The evidence flag fy is used for
the factor reduction operation shown in Fig. 8.

When a certain value of a RV or a subset of RVs is
observed, this is incorporated by setting the evidence flag for
the corresponding states (assignments) in a factor. This makes
sure that the factors are consistent with the observed/updated
information. For example, in Fig. 8, if value cl1 has been

RMSE

-10 \ N -
10 \i\ NG 167 3
\ 2 4 6 8 10

N\ Resolution(bits)

12| o~ LV FAILURE

[= HYPOVOLEMIA
4 ANAPHYLAXIS \
10 [~ ANEST./ANALGESIA INSUFFICIENT
-5~ PLUM. EMBOLUS N\
id8| INTUBATION \
DISCONNECTION %
18 KINKED TUBE

L L

Il
0 10 20 30 40 50 60 70
Resolution(bits)

Fig. 15.
tradeoff.

MATLAB simulation model for accuracy versus bit-resolution

observed for the RV C then the rows corresponding to value
cl in factor @3, their evidence flag fo has been set (factor
reduction), while the rows corresponding to value ¢2 for the
RV C their evidence flag fy is cleared. The evidence flag fy is
read during any factor computation and allows incorporating
only values consistent with this new updated information about
the states of RVs for inference computation. The flag f; is
used during factor marginalization and factor normalization
operation and its use will be explained later on. For now,
it does suffice to say it is a data-flow control flag.

The accelerator can process a maximum of 1 K entries in
a factor at a time with a maximum support of 20 RVs each
taking 256 possible values. Thus, the theoretical maximum
size of a factor that the proposed hardware accelerator can
handle is 28%20=160 eoniries which is sufficient for handling
massive BNs, such as PATHFINDER, MUNIN, and so on
(>1000 nodes) [18].

For numerical considerations, operations such as the factor
product involve multiplying many small numbers together,
can lead to underflow problems due to finite precision
arithmetic [15]. This is addressed by renormalizing the factor
after each operation. However, if each entry in the factor is
computed as the product of many terms, underflow can still
occur [15]. This is avoided by performing the computation in
log-space, replacing multiplications with additions. The factor
marginalization operation requires summing entries. To avoid
converting from log-space to linear-space and storing the result
back into log-space, a lookup table (LUT) for addition is used
instead, to speed up the operation.

A. Accuracy Versus Bit Resolution

A MATLAB simulation model is developed to evaluate
the design tradeoff between accuracy and the bit-resolution
for log-space computation Fig. 15 for a medium-size
(20-60 nodes) ALARM BN, as shown in Fig. 16 [19]. The
Root Mean Square Error (RMSE) is computed and averaged
for 10 K Monte Carlo simulations and is plotted against the
resolution (number of bits 4, 5, 6, 7, 8, 16, 32, and 64) being
used for log-domain computation. The RMSE is computed

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Number of nodes: 37

Number of arcs: 46

Number of parameters: 509 Average degree: 2.49

Maximum in-degree: 4

Hypovolemia LV failure Anaphylaxis

insufficient
Stroke Vol

Blood pressure @

o (21)
Volum \ @ PAP @
History Catechglamine
ofolgilo 5202
cvp PCWP TPRY §yCO @

@ Anest./Analgesia Pulm. Embolus

kinked

Disconnection

Vent Machine

Error Error MV=TV*RR
Low Output Cauter Min Vol
HRBP HR HR exp. CO2
EKG SAT

Fig. 16. ALARM BN.

by subtracting the 64-bit floating-point computations from the
fixed-point finite precision integer computations. As expected,
the RMSE decreases with increasing bit-resolution beyond 8
bits. Below 8-bits, the RMSE does not decrease for some
variables with increasing bit resolution (4, 5, 6, 7, and 8).
This is because of the very low resolution in the log-domain.
The RMSE is different for each variable as the quantization
error is data-dependent. In the plot, the RMSE is computed for
the probabilistic inference of eight variables, which consist of
both diagnostic as well as measurement variables. For exam-
ple, Left Ventricular FAILURE correspond to left ventricular
failure, HYPOVOLEMIA is measure of decrease in volume
of blood plasma and ANEST./ANALGESIA INSUFFICIENT
correspond to insufficient anesthetic and so on. The accuracy
of the probabilistic inference required for a given application
will determine the target RMSE, and hence the bit-resolution
for the hardware accelerator. A 6-bit resolution was chosen to
keep the silicon area to ~1 mm? for the prototype chip for
the mean square error of 107!,

B. Factor Operations

As discussed the hardware accelerator can be configured to
perform any of the factor operations using a CT. Now, we
will discuss how the hardware accelerator can perform these
factor operations. For the factor product example in Fig. 6,
the RVs involved in the factor operation (A, B, and C)
and their cardinalities are defined in the RV mask registers
and cardinality registers, respectively, in the CT. Then, the
assignment generation block in Fig. 9 generates the assignment
for each RV, as shown in Fig. 11. Now, since the factor 3
involves all three RVs (A, B, and C), therefore, the assignment
for each of these RVs is used to generate the index for the
factor 3, i.e., the assignment al, b1, and cl corresponding
to row 1 in Fig. 11 generates index O for factor (3
using (2). Similarly, since factor @1 and factor @2 uses

RVs A and B and B and C, respectively, only assignments of
these RVs are used to generate their index for the given factor
operation, i.e., the assignment al, b1, and c1 corresponding to
row 1 in Fig. 11 generates index 0 (using al, b1) for factor @1
and (using b1, cl) factor ¥2 using (2). This allows to add
(log-domain) row 1 of factor #1 to row 1 of factor (2
and store the result in row 1 of factor ¢)3. The next value
generated by the assignment generation block is al, b1, and ¢2
corresponding to row 2 in Fig. 11 generates index O
(using al, b1) for factor @1, index 1 (using b1, c2) for factor #2
and index 1 (using al, bl, and c2) for factor 3. This way
row 1 of factor 1 is added to row 2 of factor #2 and the result
is stored in row 2 of factor #3 as required by the factor product
example in Fig. 6. The hardware accelerator serially processes
the factors until the assignment generation block finishes
its count or the maximum 1 K entries have been reached
in a factor.

The factor marginalization example as shown in Fig. 7
requires summing out a RV or a group of RVs from a
given probability distribution. The RVs involved in the factor
operation and their cardinalities are defined in the CT as
discussed before in the factor product operation, but with the
addition of setting the RV mask marginalization registers for
the RVs that need to be marginalized. In our example, the
20-bit mask register would have hex value 0 x 00002, since
the RV B mapped to RV[1] needs to be marginalized from
the factor 3. The assignment generation block generates the
assignment for factor #J3 as before. Now, since the factor (4
involves RVs A and C, the assignment to index mapping block
along with the marginalization mask registers generates its
index using (2). For example, the assignments al, b1, and cl
corresponding to row 1 in Fig. 11 generate index O for
factor ¥3 and index O (using al, c1) for factor #4. This way
row 1 of factor 3 is added using a LUT in Fig. 9 to row 1
of factor #4 and the marginalization/normalization flag bit fi
of factor ¢)3 row 1 is set indicating that the current value has

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KHAN AND WENTZLOFF: HARDWARE ACCELERATOR FOR PROBABILISTIC INFERENCE IN 65-nm CMOS 7

been processed to avoid duplicate counting. The next value
generated by the assignment generation block is al, b1, and ¢2
corresponding to row 2 in Fig. 11 generates index 1
(using al, bl, and c¢2) for factor @3 and index 1
(using al, ¢2) for factor #4. The row 2 of factor @3 is added
using the LUT to row 2 of factor #4 and the f; flag is
set for factor #3 row 2. The next value generated by the
assignment generation block is al, b2, and cl corresponding
to row 3 in Fig. 11 generates index 2 (using al, b2, and cl)
for factor 3 and index O (using al, c1) for factor #4. The
row 3 of factor 3 is added to row 1 of factor #4 and the f;
flag is set. Therefore, row 1 and row 3 of factor /3 are added
together to generate row 1 of factor 4 marginalizing RV B
as required by the factor marginalization example in Fig. 7.
The accelerator will process the entire factor serially until the
assignment generation block finishes its count or the maximum
1 K entries have been reached in a factor.

The factor normalization operation scales the resulting
factors to make them valid probability distributions. The RVs
involved in the factor and their cardinalities are defined in
the CT, the assignment for each RV is generated and the
index is computed as before. The normalization operation is
split into two states. In the first state factor normalization
cumulative sum, a running sum of each entry in a factor is
computed using the LUT. In the second factor normalization
scaling state, the computed accumulated sum is subtracted
(log domain) from each entry in the factor, hence, normalizing
the probability value. The accelerator will process the entire
factor serially until the assignment generation block finishes
its count or the maximum 1 K entries have been reached
in a factor.

V. MEASURED RESULTS

A medium-size (20-60 nodes) ALARM BN is chosen for
benchmarking the performance of the hardware accelerator as
shown in Fig. 16 along with its graph properties [19]. There
are a total of 37 nodes, 46 arcs, and 509 parameters in the
network [18]. The ALARM network is an expert system
designed for hospital patient monitoring to reduce the false
alarm rate in a hospital setting. It calculates probabilities
for differential diagnosis based on available evidence
and measurements from the sensors [19]. There are nine
observation variables in the network, e.g., patient history, heart
rate, Electrocardiogram, and blood pressure and so on and
eight diagnostic variables that predict a patient’s condition.
The network consists of 27 cliques and the maximum number
of variables in a clique is 5, while the maximum clique size
is 144. For the clique-tree message passing algorithm, the
ALARM network is converted offline into its corresponding
clique-tree using HUGIN Expert software [20] Fig. 4. This
conversion is a one-time process unless the graphical model
is updated incorporating new knowledge, which will require
updating the clique-tree. The prototype chip is fabricated in
a 65-nm CMOS process with an active area of 0.52 mm?
shown in Fig. 17. The chip is fully synthesized using a
high-voltage process and operated at a near-threshold voltage
of 0.5 V to save power and improve energy efficiency while
operating at maximum clock frequency of 33 MHz. The total

Computed energy profile for Alarm

Network 65nm CMOS
This Work| PIC MCU =i

Network Initialization 12.2n) 1.9mJ [
Upward message passing 21.8nJ) 5.6m)J [%]
Downward r ge passing | 20.1nJ 6.4m) : :
Beliefs computation 21.3nJ 5.2mJ 1 =
Inference for LV FAILURE, 86pJ 845 mm 5
HYPOVOLEMIA, DISCONNECT L
ANEST.(ANALGESIA By
INSUFFICIENT, ANAPHYLAXIS, [
KINKED TUBE, PLUM. EMBOLUS|
Inference for INTUBATION 99pJ

Execution Time 350us 11.1s
Total 76.2n) 19.9mJ

Fig. 17. Computed results for ALARM BN.

measured active power is 218 x¢'W. Significant energy savings
have been achieved through near-threshold operation [21].

The steps to compute a probabilistic inference using the pro-
posed hardware accelerator are as follows. First, the BN is con-
verted offline into its corresponding clique-tree. The hardware
accelerator is then used to multiply the factors assigned to each
clique in a clique-tree to compute initial potentials. This step is
referred to as network initialization. Then, the clique-tree data
structure is used to pass messages between neighboring
cliques. This is accomplished manually through an FPGA in
our measurement setup but will be handled by microcontroller
software in an embedded application, as shown in Fig. 1.
Second, the message passing start from the leaves of the
clique-tree and proceeds up the tree toward the root clique,
this step is referred to us upward message passing. Third, the
message passing start from the top root clique and proceeds
down the tree toward the leaf cliques, this step is referred to us
downward message passing. Fourth, each clique in a clique-
tree multiplies all the received messages with its own initial
potential. The result is a factor called the beliefs. This step is
referred to as beliefs computation. The hardware accelerator is
used serially to perform the factor operations required in each
step. For example to compute a message, a clique potential
(factor) and an incoming message are written into the RF using
the scan chain. In our measurement setup an FPGA is used to
configure the hardware accelerator for factor operations, which
for a message computation typically involves factor product,
factor marginalization, and factor normalization operations.
After the appropriate factor operation(s) the message (factor)
is read from the RF using the scan chain.

For a continuous operation using the proposed hardware
accelerator, Microcontroller Unit (MCU) software will write
the configuration bits and read/write the factor data serially
into the RF. The software will use the clique-tree data structure
to control the computation and the flow of messages.

There are eight-diagnostic ~ variables in the
ALARM network; after the clique-tree algorithm is converged
the network can, then, be queried for the probabilistic
inference. This is accomplished by identifying the beliefs
(factors) containing the RV of interest. The probabilistic
inference is then computed by marginalizing all but the RV
of interest in a factor (belief). The probabilistic inference
computation involves factor marginalization and factor
normalization operations.

The calculated total energy to evaluate the ALARM network
is 76.2 nJ and is distributed for the clique-tree algorithm
among its constituent components, as shown in Fig. 17.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

This energy computation does not consider the energy required
for Input Output operations, e.g., the energy spent moving
the data in and out of the memory. The total energy for
the ALARM network is computed by first measuring the
energy required for each of the factor operations to compute a
message on chip, and then calculating the number of messages
and factor operations required to run the entire clique-tree
message-passing algorithm. The energy required to compute
the probabilistic inference is computed for each of the queried
variables and is shown in Fig. 17. The higher energy required
for INTUBATION inference is expected, since the node has
higher out-degree (number of children) in the graph Fig. 16
and its corresponding clique in the clique-tree requires more
factor operations relative to other inference variables.

To implement the probabilistic inference algorithm on
a sensor node in the absence of any ASIC hardware
accelerator, a low-power MCU will be a natural choice for an
embedded designer. Many sensor node platforms are based
on an ultralow-power MCU and, therefore, the proposed
hardware accelerator is benchmarked against it. For total
energy comparison if the same ALARM network were to be
implemented on an ultralow-power MCU in a sensor node,
we look at a Peripheral Interface Controller (PIC) MCU from
Microchip [22], which consumes 30 ©A/MHz at 1.8 V. This
MCU is a Reduced Instruction Set Computer-based architec-
ture with only 49 all single cycle instructions except branches.
It consumes 1.8 mW of power at a 33-MHz clock frequency.
The total number of ALU operations required to execute
CT message passing algorithm for the ALARM network were
computed and it would take 11.1 s for the CT algorithm to
converge on a PIC MCU. This corresponds to total energy
of 2 mJ, which is roughly six orders of magnitude higher than
the proposed hardware accelerator. It should be noted that the
PIC MCU has other functional blocks running; e.g., power
management, on-chip clock, and timing generation but never-
theless 4-5 orders of magnitude energy savings is pragmatic.

VI. CONCLUSION

Embedded machine learning is likely to provide another
layer of service in a distributed sensor network enabling intel-
ligent sensing. Since the smart sensors are expected to be low-
cost and have long battery-life it is necessary to use hardware
accelerators to achieve high-energy efficiency required for an
energy-constrained application. In this paper, we presented a
hardware accelerator for computing a probabilistic inference
using BNs. The hardware accelerator is operated at near-
threshold voltage of 0.5 V and consumes 77 nJ of total
energy for running a clique-tree message-passing algorithm
for the ALARM network. The theoretical maximum size of
a factor that the proposed hardware accelerator can handle is
28x20)=160 epiries, which is sufficient for handling massive
BNs, such as PATHFINDER, MUNIN, and so on (>1000
nodes).

REFERENCES

[11 G. E. Moore, “Cramming more components onto integrated circuits,”
Electronics, vol. 38, no. 8, pp. 1-4, Apr. 1965.

[2] W. Weber, J. Rabaey, and E. H. L. Aarts, Eds., Ambient Intelligence.
New York, NY, USA: Springer-Verlag, Mar. 2005.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

[3] Cisco Keynote Highlights From CES, Cisco, San Jose, CA, USA, 2014.

[4] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Comput. Netw., vol. 54, no. 15, pp. 2787-2805, Oct. 2010.

[5] G. Chen et al., “A cubic-millimeter energy-autonomous wireless
intraocular pressure monitor,” in [EEE Int. Solid-State Circuits Conf.
Dig. Tech. Papers (ISSCC), San Francisco, CA, USA, Feb. 2011,
pp. 310-312.

[6] P. Chirarattananon, K. Y. Ma, and R. J. Wood, “Adaptive control of
a millimeter-scale flapping-wing robot,” Bioinspiration Biomimetics,
vol. 9, no. 2, p. 025004, 2014.

[7]1 IBM. The Watson Ecosystem. [Online]. Available: http://www.ibm.com/
smarterplanet/us/en/ibmwatson/ecosystem.html, accessed Jan. 23, 2014.

[8] S. N. Yanushkevich, M. L. Gavrilova, V. P. Shmerko, S. E. Lyshevski,
A. Stoica, and R. R. Yager, “Belief trees and networks for biometric
applications,” Soft Comput., vol. 15, no. 1, pp. 3—11, Jan. 2011.

[9] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization

technique occurring in the statistical analysis of probabilistic functions

of Markov chains,” Ann. Math. Statist., vol. 41, no. 1, pp. 164-171,

1970.

C. Bishop, Pattern Recognition and Machine Learning. New York, NY,

USA: Springer-Verlag, 2006.

Z. H. Kong, J.-J. Tan, B. E. S. Akgul, K.-S. Yeo, K. V. Palem, and

W.-L. Goh, “Hardware realization of a medical diagnostic system based

on probabilistic CMOS (PCMOS) technology,” in Proc. IEEE Int. Symp.

VLSI Design, Autom. Test, Apr. 2008, pp. 275-278.

M. Lin, I. Lebedev, and J. Wawrzynek, “High-throughput Bayesian

computing machine with reconfigurable hardware,” in Proc. 18th Annu.

ACM/SIGDA Int. Symp. Field Program. Gate Arrays, 2010, pp. 73-82.

J.-F. Wang, A.-N. Suen, J.-R. Lee, and C.-H. Wu, “A Bayesian neural

network chip design for speech recognition system,” in Proc. IEEE Int.

Conf. Neural Netw., vol. 4. Nov./Dec. 1995, pp. 2027-2030.

S. Marra, F. C. Morabito, P. Corsonello, and M. Versaci, “FPGA

implementation of Bayesian neural networks for a stand-alone predictor

of pollutants concentration in the air,” in Proc. IEEE Int. Joint Conf.

Neural Netw., vol. 4. Jul. 2004, pp. 2613-2618.

D. Koller and N. Friedman, Probabilistic Graphical Models—Principles

and Techniques (Adaptive Computation and Machine Learning).

Cambridge, MA, USA: MIT Press, 2009.

J. Pearl, “Fusion, propagation, and structuring in belief networks,” Artif.

Intell., vol. 29, no. 3, pp. 241-288, Sep. 1986.

B. H. Calhoun et al., “Body sensor networks: A holistic approach from

silicon to users,” Proc. IEEE, vol. 100, no. 1, pp. 91-106, Jan. 2012.

M. Scutari. Bayesian Network Repository. [Online]. Available:

http://www.bnlearn.com/bnrepository/, accessed Aug. 1, 2013.

I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper,

“The ALARM monitoring system: A case study with two probabilistic

inference techniques for belief networks,” in Proc. 2nd Eur. Conf. Artif.

Intell. Med., 1989, pp. 247-256.

HUGIN EXPERT. [Online]. Available: http://www.hugin.com, accessed

Sep. 2, 2013.

R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and

T. Mudge, “Near-threshold computing: Reclaiming Moore’s law through

energy efficient integrated circuits,” Proc. IEEE, vol. 98, no. 2,

pp. 253-266, Feb. 2010.

Microchip. PICI2(L)F1822 Data Sheet. [Online]. Available: http://ww1.

microchip.com/downloads/jp/DeviceDoc/jp547368.pdf, accessed

Sep. 20, 2014.

Analytic bridge. (Sep. 2011). Bayesian Network Newsletter.

[Online]. Available: http://www.analyticbridge.com/profiles/blogs/

bayesiannetwork-newsletter-september-2011

[10]

(11]

[12]

[13]

[14]

[15]

(16]
[17]
(18]

[19]

[20]

[21]

[22]

(23]

Osama U. Khan (S’08) received the
B.E. (summa cum laude) degree in electronics
engineering from the NED University of
Engineering and Technology, Karachi, Pakistan,
in 2007, and the M.S. and Ph.D. degrees in
electrical engineering from the University of
Michigan, Ann Arbor, MI, USA, in 2010 and 2013,
respectively.

He was with the RF Division, Qualcomm,
San Diego, CA, USA, in 2009. In 2014, he was
with Psikick Inc., Charlottesville, VA, USA, an
ultralow-power wireless startup, where he developed low-power crystal
oscillator and short-range radio front-end. He is currently a Research
Scholar with the University of California at Berkeley, Berkeley, CA, USA.
His current research interests include battery independent, robust, adaptive
microsystems, and their applications.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KHAN AND WENTZLOFF: HARDWARE ACCELERATOR FOR PROBABILISTIC INFERENCE IN 65-nm CMOS 9

David D. Wentzloff (S’02-M’07) received the
B.S.E. degree in electrical engineering from the
University of Michigan, Ann Arbor, MI, USA,
in 1999, and the M.S. and Ph.D. degrees from the
Massachusetts Institute of Technology, Cambridge,
MA, USA, in 2002 and 2007, respectively.

He co-founded Psikick Inc., Charlottesville, VA,
USA, a fabless semiconductor company, developing
ultralow-power wireless systems-on-chip in 2012.
He has been with the University of Michigan
since 2007, where he is currently an Associate
Professor of Electrical Engineering and Computer Science. His current
research interests include RF integrated circuits, with an emphasis on
ultralow-power design.

Dr. Wentzloff is a member of the IEEE Circuits and Systems Society,
the IEEE Microwave Theory and Techniques Society, the IEEE Solid-State
Circuits Society, and Tau Beta Pi. He was a recipient of the DARPA Young
Faculty Award in 2009, the Eta Kappa Nu Professor of the Year Award from
2009 to 2010, the DAC/ISSCC Student Design Contest Award in 2011, the
IEEE Subthreshold Microelectronics Conference Best Paper Award in 2012,
the NSF CAREER Award in 2012, the ISSCC Outstanding Forum Presen-
ter Award in 2014, and the EECS Outstanding Achievement Award from
2014 to 2015. He has served on the Technical Program Committee of the Inter-
national Symposium on Low Power Electronics and Design since 2011 and
the IEEE Radio Frequency Integrated Circuits Symposium since 2013. He has
served as a Guest Editor of the IEEE TRANSACTIONS ON MICROWAVE
THEORY AND TECHNIQUES, the IEEE Communications Magazine, and the
Journal of Signal Processing: Image Communication (Elsevier). He served on
the Technical Program Committee of the IEEE International Conference on
Ultrawideband from 2008 to 2010, and S3S from 2013 to 2014.

