All-Digital Synthesizable UWB Transmitter Architectures

Youngmin Park and David D. Wentzloff

University of Michigan MI, USA

ICUWB 2008

UWB Radios – Recent Pubs

Sources: JSSC, ISSCC, CICC, ISCAS, VLSI, TMTT

UWB Transmitter FOM

UWB transmitters have benefited from process scaling

TX E/b dominated by digital power

Motivation for Synthesizable Transmitter

Transmitter Architecture

Digital logic gates only

Two Pulse Generators

Delay Line Pulse Generator

Tunable Delay Cell

Simplified delay model

 $\Delta t(n) \propto \frac{C_1 \times N_{tot}}{n} + C_2$ N_{tot} : the number of buffers n: the number of buffers turned on

 C_1, C_2 : physical parameters

Digitally tunable delay

Mask Register

Edge Combiner

Calibration with Delay Line

Calibration with Delay Line

Calibration with Delay Line

Measured delay difference (∆t) is determined by

path(MR,EC) - path(MR,EC)

Tunable value

Inherent mismatch by synthesis/PAR

Each edge calibrated

Two Pulse Generators

Transmitter Architecture

Ring Oscillator Pulse Generator

Coarse / Fine control of frequency Bandwidth tuned with counter

Gating
Oscillating
signal

Tuning with Ring Oscillator

Fine tune with delay cell

Coarse tune

Simpler calibration

FPGA Prototype

Transmitter Architecture

Delay cells are implemented with TBUFs in FPGA

Other logic circuits are mapped to configurable logic blocks (CLBs)

Xilinx Virtex-II Pro FPGA Development board

Synthesis & PAR by design tools

Delay Line PG Measurement

Pulse / spectrum generated by delay line PG

Ring Osc. PG Measurement

Pulse / spectrum generated by ring oscillator PG

Calibration in FPGA prototype

Before/After calibration

With control code word, each cell is calibrated to have same delay

Calibration in FPGA prototype

Before/After calibration

With control code word, each cell is calibrated to have same delay

Conclusions

All-digital synthesizable transmitter

No custom circuit / layout Mismatch overcome by calibration

Delay line PG vs. Ring osc PG Flexibility vs. Simplicity

FPGA prototype

Works at scaled frequency