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Exploiting Channel Periodicity in Body
Sensor Networks

Nathan E. Roberts, Seunghyun Oh, and David D. Wentzloff, Member, IEEE

Abstract—This paper models the periodic characteristics of body
sensor network (BSN) wireless channels measured using custom
hardware in the 900-MHz and 2.4-GHz bands. The hardware logs
received signal strength indication (RSSI) values of both bands si-
multaneously at a sample rate of 1.3 kS/s. Results from a measure-
ment campaign of BSNs are shown and distilled to reveal charac-
teristics of BSN channels that can be exploited for reducing the
power of wireless communication. A new channel model is intro-
duced to add periodicity to existing 802.15.6 WBAN path loss equa-
tions. New parameters, activity factor and location factor, are in-
troduced to estimate the model parameters. Finally, a strategy for
exploiting the periodic characteristics of the BSN channel is pre-
sented as an example, along with the power savings from using this
strategy.

Index Terms—Body sensor networks (BSNs), channel modeling,
energy constrained systems, periodic channels, received signal
strength indication (RSSI), 802.15.6 WBAN.

1. INTRODUCTION

EVELOPING accurate and sophisticated channel models

for energy-constrained systems is a necessary step in un-
derstanding the key elements that factor into a channel model’s
behavior. However, channel modeling does not intuitively lend
itself to aid the designer in producing system and low-level cir-
cuit design tradeoffs that are critical for improving energy effi-
ciency. A body sensor network (BSN) is a network of miniature
devices worn on the body to monitor a person’s health status,
for example. Fig. 1 shows an example of a BSN linking sev-
eral sensing devices to a common aggregator, in this case a cell-
phone. By producing a model that focuses on the periodic time
domain behavior of the channel for a wireless body sensor net-
work, we can better analyze power/sensitivity tradeoffs at the
circuit level and how they might impact communication goals
at the system level. Similarly, accurate models can be used to
develop BAN-channel specific MAC protocols that more effi-
ciently duty-cycle the radios.

A. Channel Model Around the Human Body

The channel for wireless body sensor networks involves
the environment, and electromagnetic propagation, around the
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Fig. 1. Overview of wireless BSN.

human body which is complicated due to the body’s effect on
antenna performance [1]. One reason the channel for a BSN
is unique compared to other channel models is the channel’s
dynamic characteristics due to the inherently limited motion of
a person’s body and the proximity of the sensors to the body
itself. The distance and angle of antennas mounted to sensors
worn on the body will constantly change in relation to one
another as a person performs daily activities. For example, if a
person has sensors on their belt and their wrist, then when their
arm is in front of the body while walking, the channel will be
line-of-sight (LOS) and the signal will be strong. In the back
of their stride the channel will be nonline-of-sight (NLOS)
and the signal will be weak, requiring more power to receive
it. Intuitively, the channel should oscillate between strong
and weak conditions as the person walks, runs, or performs
other daily activities. Furthermore, these oscillations should be
bounded by the physical limitations of the body’s movement,
or lack of movement (i.e., the human body is never perfectly
still). Statistically analyzing such behavior using empirical data
will allow us to effectively utilize the dynamics of the channel
to reduce power consumption of the radio.

B. Low Power Radios

Radio power typically consumes the majority of the total
power in a BSN and is therefore a significant bottleneck in
energy efficient design. This is because radio power is typically
much higher than other components in a BSN node, and the
radio is not as easily duty cycled since it has to remain on
when actively listening for packets. Often, as is the case with
standards like Bluetooth or Zigbee, radios are designed to
have excellent sensitivity, defined as the minimum detectable
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Fig. 2. Low Power Radio Survey (2006-2010) [2]-[16].

power level of the receiver, so they can operate at a near
worst-case path loss. This sensitivity level ensures reliable
communication, but significantly increases the radio’s power
budget. Fig. 2 shows a survey of published ultra-low power
radios from 2006-2010, comparing their power versus sensi-
tivity. Empirically, the survey shows a slope of —2 on a log
graph between sensitivity and power consumption, with a floor
around —40 pW. The slope is influenced by several parameters,
such as the variation in data rate, architecture, and nonlinearity
present in the radios. The survey only covers ultra-low power
receivers, common in BSN research, and Bluetooth or Zigbee
receivers with higher power will sit well above this line. Using
this survey one can estimate a squared relationship between
power and sensitivity. For example, a 2x increase in power
results in a 4 X increase (improvement) in sensitivity.

C. Design Tradeoffs

Knowing the time domain response of a wireless BSN
channel allows us to make decisions based on design tradeoffs
if we can tolerate periods of interrupted communication. By
reducing the sensitivity of the receiver, square root power gains
can be achieved at the cost of intermittent communication.
Even so, the channel variability is slow enough that efficient
packet transfer is possible.

To illustrate this tradeoff, Fig. 3 shows the measured link
quality indicator (LQI) versus time of a person running with a
receiver on the left hip and transmitter on the left wrist. Also
shown is the sensitivity of a TI Bluetooth low energy radio [17]
as an example. When LQI is above the sensitivity limit, reliable
communication is achieved, and in this example, the majority
of the time LQI far exceeds the sensitivity; therefore, the radio
is overdesigned for the given channel. One could decrease the
receiver sensitivity by 15 dB in this case, which would give an
estimated 5.6 x power reduction by applying the empirical slope
from Fig. 2, but result in intermittent communication. Provided
a BSN sensor can tolerate some latency, we can make use of the
fact that poor quality channels do not remain poor for long when
a person is active.
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Fig. 3. Channel path loss versus Bluetooth sensitivity.

The key to our modeling is a focus on exploiting the peri-
odicity of the channel and creating a model with the radio de-
signer in mind. Section II will introduce current channel mod-
eling progress in a wireless BSN and summarize the work done
in the 802.15.6 Wireless Body Area Network (WBAN) Task
Group. We will address some of the short comings of these
models and explain how we plan to resolve them. Section III will
introduce our custom portable dual-band RSSI recorder that can
collect data in the 900-MHz and 2.4-GHz bands simultaneously.
Section IV will show our measurement results and Section V
will discuss our new channel model. Section VI will give ex-
amples on how this new model can influence radio design deci-
sions. Section VII will conclude the paper.

II. CHANNEL MODELING BACKGROUND

A. Background Modeling and Equations

The 802.15.6 (WBAN) channel model document [18] is a
collection of multiple experiments spanning different defined
channels, including body-to-body or body-to-off body com-
munication as well as line-of-sight (LOS) and nonline-of-sight
(NLOS) variations. The purpose of these channel models is
for evaluating potential physical layer proposals more than
producing all-encompassing models. The ones included below
describe WBAN CM3, which is body-to-body communica-
tion in the 900-MHz and 2.4-GHz bands for both LOS and
NLOS communication. Three different experiments are de-
scribed, resulting in the following two path loss modeling
equations:

PL(d) [dB] = alog;y(d) + b+ N €))
where a and b are coefficients of linear fitting, d is the Tx-Rx

distance in millimeters, and N is a normally distributed random
variable with o,

PL(d) [dB] = —10log; (Poe™™" + P1) + apn,  (2)



6 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 2, NO. 1, MARCH 2012

Time Domain Data

0.4 Reconstructed WBAN Time Domain Data

RSSI/Channel [dB]

5 10 15
Time [sec]

Fig. 4. Time domain channel model with WBAN (1) reconstruction.

where F is the average loss close to antenna, my is the average
decay rate in dB/cm for the surface wave traveling around the
perimeter of the body, P; is the average attenuation of compo-
nents in an indoor environment radiated away from the body
and reflected back toward the receiving antenna, o, is the log-
normal variance in dB, and 7, is a zero mean unit variance
Gaussian random variable.

Equation 1 references Experiment A in the Channel Modeling
document [19] which features a test subject in a hospital room
in different stationary positions. S21 is measured between two
antennas using a vector network analyzer in the 950-956 MHz
and 2.4-2.5 GHz bands. A transmitter antenna is placed at the
waist, with a receiver antenna being placed on parts of the body,
including head, ear, shoulder, wrist, waist, leg, and ankle. Mea-
surements in an anechoic chamber are also taken as a control
experiment to remove the multipath effect. The path loss model
is derived using a regression line through least square fitting for
each frequency band.

Equation 2 references Experiment B [20] which is similar but
includes signal fading in its experiments, covering the 915-MHz
and 2.45-GHz frequency band. Antennas are placed horizontally
around the torso as well as vertically along it and S21 is mea-
sured similar to Experiment A. The test subject is standing still
during the experiments.

Experiment C [21] observes subject movement. Test subjects
are observed standing, walking, and running in place in an of-
fice environment using BPSK modulated signals at 820 and
2360 MHz. The channel response is captured on a vector signal
analyzer in 40 ps sets, with a 2.5-ms gap before the next capture
(sample rate of 0.4 kS/s), totaling 10 s. Results show the most
significant fading effects are due to movement and the change in
distance and alignment of the antennas. Variation also increases
with increased movement from the test subject. Finally, channel
stability over time is observed and assigned a value, the channel
variation factor, which is the ratio between the standard devia-
tion and the rms power of the sequence.

Papers published outside of 802.15.6 cover a spectrum of dif-
ferent approaches ranging from parallel finite-difference time-
domain method (FDTD) simulations [22] to measurements from
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commercial MICAz motes using a Zigbee radio [23]. Papers
have also attempted to characterize the temporal characteristics
of the channel [24].

B. Results From Channel Modeling Background Study

Many different distributions such as lognormal, normal, or
Weibull [25] fit different experimentation scenarios within a
BSN. The most commonly used distribution for a static channel
is lognormal, supported by both the S21 and RSSI data collec-
tion. Different experiments show different adjustment factors to
the basic lognormal equation. The lognormal result is explained
in [25] by the large number of contributing effects to the at-
tenuation of the transmitted signal which are multiplicative, or
additive in the log domain. In addition, movement was shown
to increase the variability of the channel, which is an important
observation for BSNs. Several papers cite the significant impact
of antenna angles as well as influences from the environment
(multipath) and the size and shape of the user [22].

There are several factors that these experiments lack that are
critical to applying our knowledge of the channel to the design
of an energy efficient BSN. Most experiments do not attempt to
characterize the time domain characteristics of the channel and
are therefore not conducted with a high enough sample rate or
for a long enough period of time to accurately see the influence
time has on the channel.

Perhaps most important is that the resulting path loss equa-
tions erase time domain periodicity from the test results. Fig. 4
illustrates how this periodicity is erased when using only path
loss statistics. A measured time domain channel response is
shown (left) with its respective distribution (middle), which is
then reconstructed using (1) from the WBAN task group channel
model (right). It is obvious that (1) does not reproduce the struc-
tured periodic channel response in the original measured data,
nor is that its intention. The purpose of (1) is to give a single
path loss estimate for a channel. The time domain information
is lost.

Understanding this variability and being able to anticipate or
accommodate for it is the key to our channel model and subse-
quent analysis. Our channel modeling will correct these short-
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Fig. 5. Schematic of the transmitter.

comings by using our custom COTS hardware to measure RSSI
at a 1.3 kS/s sample rate. Since the hardware is battery oper-
ated and portable, we can take data in different environments
very applicable to peoples’ normal lives or specific medical ap-
plications. Our statistical models will evaluate path loss of the
channel in the time domain and will develop a policy to char-
acterize the channel so it can be simplified and used to make
design decisions that impact the performance and energy con-
sumption of a BSN node.

III. PORTABLE DUAL-BAND RSSI RECORDER

RSSI was measured in the 900-MHz and 2.4-GHz bands to
model channel characteristics. Multiple transmitters are placed
on the body and broadcast simultaneous 900-MHz and 2.4-GHz
tones. These tones are on—off-keying (OOK) modulated with
unique CDMA codes so that the receiver can identify each trans-
mitter. Multiple receivers are placed on the body and simulta-
neously record the RSSI of the 900-MHz and 2.4-GHz paths
into local memory. When an experiment is complete, the RSSI
data is uploaded to a PC, where postprocessing is performed to
correlate the data with the CDMA code, which will identify the
transmitter and provide accurate RSSI measurements.

The primary advantages of our hardware are that it is dual-
band, portable, and has a sampling rate sufficient for Nyquist
sampling of the channel response. The transmitter and receiver
each have two antennas at 900 MHz and 2.4 GHz. Additionally,
they can operate with a single portable battery. The sampling
rate of the channel RSSI can be programmed up to 50 kS/s. In
this work, a sampling rate of 1.34 kS/s was chosen to increase
sampling duration.

A. Transmitter

Fig. 5 shows the schematic of the transmitter. It consists of
a crystal oscillator, a microcontroller, a 900-MHz oscillator
(MAX2623 from MAXIM), a 2.4-GHz oscillator (MAX2750
from MAXIM), a 900-MHz antenna (0920AT50A080 from
Johanson Technology) and a 2.4-GHz antenna (2450AT43A100
from Johanson Technology). A 5-MHz crystal oscillator is used
as a reference clock, and a single 3 V coin-sized battery is used
to supply power to the entire transmitter.

The microcontroller generates a unique CDMA code for each
transmitter and performs OOK by enabling the 900-MHz and
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Tx out (V)

TIx turn-on time
0 1 2 3 4 5 6 7 8
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Fig. 6. Transient response.
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Fig. 7. Schematic of the receiver.

2.4-GHz VCOs with it. The enable signals for the VCOs are
inverted to eliminate interference between the bands.

The one-bit time duration of the CDMA code is 24 us. As
shown in Fig. 6, this duration is much longer than the 1 us
turn-on time of the VCO and the 3 s response time of the RSSI
IC in the receiver. The supply current of the entire transmitter
is 12.8 mA, which can be powered continuously from a single
3 V battery for 48 h.

B. Receiver

Fig. 7 shows the schematic of the receiver. It consists of
a 900-MHz antenna (0920AT50A080 from Johanson Tech-
nology), a 2.4-GHz antenna (2450AT43A100 from Johanson
Technology), two RSSI detectors (LT 5534 from Linear Tech-
nology), two ADCs (AD7276 from Analog Devices), an FPGA
(Xilinx Spartan-3E), and 32 MB of SDRAM.

Each 900-MHz and 2.4-GHz signal is received through the
antennas, and then RSSI detectors convert the received signal
strengths to analog voltage outputs. The 12-bit ADCs convert
these analog voltages to digital values at a programmable sam-
pling rate. A 167 kS/s sampling rate is chosen to ensure four
sample points are recorded per CDMA bit. For a 31-bit CDMA
code, this results in a sample rate of 167/31/4 = 1.3 kS/s
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Fig. 8. Photograph of the transmitter and receiver.

after averaging. The supply current of the whole receiver is
184 mA, which can continuously operate with a rechargeable
battery for 17.4 h. The receiver also has a power management
chip, BQ24072 from Texas Instruments, so that it can charge the
battery when it is connected to a USB cable.

Fig. 8 shows a photoggraph of the transmitter and re-
ceiver. The size of the transmitter and receiver PCBs are
45 mm x 40 mm and 48 mm x 60 mm, respectively. A wrist
strap is tied to the transmitter to make it easy to wear.

C. Support for Multiple Transmitters

To measure the correlation of multiple nodes on the body,
each transmitter sends its unique Gold code. Gold codes are
a set of binary sequences, where the cross-correlation of each
sequence is bounded into three values. Gold codes are com-
monly used when implementing CDMA as they allow the re-
ceiver to easily identify the corresponding transmitter which
sent the signal of interest [26].

Since RSSI values are not linear but logarithmic, an interval is
required in which the received power from only one transmitter
is observed by the receiver in a given band in order to extract the
RSSI value from that transmitter alone. As the length of the Gold
code increases, the probability of having a nonoverlapping bit
also increases; however, the symbol duration will increase such
that the channel sampling rate decreases. Therefore, a trade-off
exists between the length of the Gold code and the number of
transmitters supported. Fig. 9 shows the number of transmit-
ters versus the average number of nonoverlapping bits of each
Gold code, considering random shifts between all received Gold
codes. In this work, the system is designed for a maximum of
four transmitters; therefore, a 31-bit code is chosen.

IV. CHANNEL MEASUREMENTS

The purpose of the measurement campaign was to collect data
across enough controlled scenarios that we could generalize the
results and compute various modeling factors. In addition we
collected data correlation between bands and sensor locations.
We did this in two stages: controlled experiments followed by
measurements conducted in a real-life scenario. Each measure-

——7bit gold code
—e—31bit gold code ||
—&—63bit gold code

Average number of non-overlap bits

Number of transmitters

Fig. 9. Number of transmitters versus nonoverlapping bits.
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Fig. 10. Data showing correlating band and location measurements.

ment was repeated three times for redundancy. Different loca-
tions on the body were targeted for each experiment.

A. Controlled Experiments

Fig. 10 shows the hardware’s ability to simultaneously mea-
sure 900 MHz and 2.4 GHz bands at multiple locations at the
same time. In this figure, path loss is shown between hip-to-wrist
and hip-to-ankle in both RF bands, sampled at 1.3 kS/s, for a pe-
riod of 20 s. To calculate the path loss, including antenna gain,
we subtracted the transmit power (—3 dBm) from the RSSI mea-
surement. Fig. 11 highlights variations in the channel periodicity
for differing activity levels as well as the hardware’s noise floor
which is around a path loss of —54 dB.

For different scenarios, the data that shows the most vari-
ability in the channel, as expected, comes from sensors on the
body extremities that move the most, like the ankle or wrist.
Somewhat unexpected is sensors on the body’s core like the
hip or chest also show a periodic response. Even with a person
standing still, faint periodicity can be observed.

B. Observations

Some notable observations from controlled experiments are
outlined in the following paragraphs.
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Hip-to-chest and hip-to-wrist communication produces peri-
odic signals with more frequency content than chest-to-chest or
chest-to-write, which is due to the motion of the hip sensor. Hip
to chest communication appears as a noisy sinusoid. When a
person walks the hip will swing between LOS and NLOS with
the chest sensor, which creates the sinusoidal response and the
frequency content appears due to the forward and backward mo-
tion between the hip and chest as the person lifts and lowers
their leg. The movement of the hip and the swing of the wrist
both contribute to the extra frequency content in that scenario.

The channel between the hip and ankle looks similar to a
square wave when walking and the increased frequency when
running makes it appear more sinusoidal. The channel between
both wrists is poor due to the nearly constant NLOS condition,
therefore relying mostly on multipath for communication. When
running, if the user is leaning forward, small windows where
the wrists pass by each other, yet are still in front of the body
and therefore LOS, will produce pulse shapes in the path loss.
Channel Measurement statistics are summarized in Table I. The
superscript numbers represent which sets of data were taken si-
multaneously. The frequency column is the fundamental fre-
quency of the oscillations observed in the path loss. p and o
are the mean and standard deviation of the path loss calculated
in dB. The two numbers in each cell represent 900-MHz and
2.4-GHz data, respectively.

C. Scenario Experiment

The second set of measurements in Fig. 12 targeted a real
life scenario where the user does not conduct strictly repeti-
tive motions, therefore creating a nonuniform channel. The sce-
nario involved the test subject playing tennis outdoors which
involves lots of fast, abrupt movements in an outdoor environ-
ment with the receiver on the left hip and transmitter on the left
wrist. Since the channel is nonuniform, nonuniform windowing
was also used to break the channel data into smaller segments
that were analyzed for periodicity. The time domain channel
response and resulting activity factors (defined in Section V)
plotted across time are shown in Fig. 12. The purpose of this
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Fig. 12. Channel waveform of a real-life scenario.
TABLE I
MEASURED CHANNEL PL PARAMETERS (TWO NUMBERS
REPRESENT 900 MHZ/2.4 GHZ DATA) (SUPERSCRIPT
SHOWS SIMULTANEOUS DATA COLLECTION)
900/2400MHz TX/RX Freq [Hz] u[dBm] o [dB]
Hip/Ankle! 0.13/0.13 49.60/44.30 0.28/0.30
Hip/Wrist? 0.28/0.17 50.34/48.74 0.90/0.99
Wrist/Wrist? 0.15/0.15 53.40/53.66 0.08/0.08
Standing
Wrist/Chest? 0.13/0.13 52.94/50.00 0.16/0.34
Chest/Hip3 0.13/0.17 | 47.64/47.46 | 0.56/0.62
Chest/Wrist> | 0.15/0.15 52.75/50.70 0.20/0.93
Hip/Ankle! 0.99/0.99 50.24/47.55 1.13/1.85
Hip/Wrist! 0.96/0.96 | 43.92/43.78 | 3.22/5.25
Wrist/Wrist? 0.13/0.13 53.54/54.00 0.24/0.39
Walking
Wrist/Chest? | 0.97/0.97 52.13/49.68 1.51/0.80
Chest/Hip? 0.68/0.92 47.24/45.92 1.20/1.43
Chest/Wrist? 0.93/0.93 50.84/49.79 2.54/3.96
Hip/Ankle! 1.78/1.78 50.70/49.77 1.48/1.24
Hip/Wrist? 1.80/1.70 49.57/47.81 2.92/4.32
Wrist/Wrist? 1.60/1.80 53.47/53.61 0.25/0.81
Running
Wrist/Chest? 1.76/1.74 51.37/46.45 2.28/4.33
Chest/Hip3 1.71/1.72 | 46.93/47.16 | 1.62/1.93
Chest/Wrist3 1.72/1.72 46.19/43.4 3.90/6.93

experiment was to observe natural movement and the change
in frequency and standard deviation across time. It is possible
that a person will remain stationary for a given period of time in
a way that restricts communication between sensors. However,
the data shows that a person in motion will see periodic peaks
and valleys in the channel response between sensors, therefore
allowing communication in at least some periods of time.

D. Correlation Among Sensor Locations and Bands

In addition to collecting data for the development of a model,
we correlated the channel response of different sensor locations
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on the body as well as different frequency bands. This informa-
tion is useful in BSN applications that may want to use knowl-
edge of one channel to predict the quality of another channel to
a different location on the body or in a different band for asym-
metric wireless links [27].

Frequency correlation is calculated by taking the correlation
coefficient between the 900-MHz and 2.4-GHz bands of the
same experiment. Results can be seen in Fig. 13. Frequency
correlation increases in relation to motion. The correlation co-
efficient while standing is difficult to predict, with values being
essentially random, ranging from 0.78 to —0.72. Once the test
subject starts moving, correlations increase significantly with
gradual improvement between walking and running. One con-
clusion we can draw from this is that while a person is stationary,
and a good channel is observed in one frequency band, it is no
guarantee that another frequency band will be good. However,
when the person is active, there is high probability that both
bands will have good channels at the same time.

The correlation among sensor locations that was the strongest
involved sensors from the wrist and hip communicating with a

-PL [dB]

-PL [dB]

Time [sec]

Fig. 15. Model validation.

sensor on the chest. This scenario, shown in Fig. 14, had a nega-
tive correlation coefficient of —0.73 and is a result of one sensor
being placed on the upper half of the body (wrist) and lower half
(hip). While the test subject was moving, the wrist would swing
forward and into a LOS scenario with the sensor on the chest
while the hip would be moving backwards and out of LOS com-
munication. This type of location correlation can be exploited
for multihop routing, or if sensors are on the same side of the
body and placed on opposing extremities so that one sensor is
always in good communication while walking or running. The
communication location that had the least correlation was wrist
to wrist.

V. PERIODIC BSN CHANNEL MODEL

Our goal is to gain insight into the channel and develop sim-
plified models that aid in the system level design of radios for
BSNs. This includes observing path loss in different scenarios
as well as developing correlations between multiple sensors at
different locations on the body and between different frequency
bands. The controlled experiments, shown in Table I, are aimed
to characterize the complex BSN channel as simply as possible
to allow for quick and effective design calculations.

The periodic behavior of the channel seen in the data is rela-
tively sinusoidal and can be represented as such. The proposed
path loss of the periodic BSN channel model with respect to
time is

PL(#)[dB] = PL(d) + 20prsin(27 - for - 1) (3)

where PL(d) is the path loss in dB calculated from one of the
802.15.6 [18] models [e.g., (1) or (2)], and the second term adds
the modeled channel periodicity where opy, is the standard de-
viation, in dB, and fpr, is the fundamental path loss repetition
frequency.

This model complements the WBAN equations that calculate
path loss, by adding a periodic dimension to the equation which
accounts for the periodicity we measured in the channel. Using
measured statistics, (3) closely models the channel as seen in
the top plot of Fig. 15, which represents someone walking with
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TABLE II
ACTIVITY AND LOCATION FACTORS DERIVED FROM DATA
. Activity Location
Action TX/RX Factor Factor
Hip/Ankle 0.24
STANDING 0.07
Hip/Wrist 0.70
Wrist/Wrist 1.00
WALKING 0.45
Wrist/Chest 0.60
Chest/Hip 0.24
RUNNING 0.85
Chest/Wrist 0.60

a transmitter on their wrist and receiver on their chest. Note the
model drops below the hardware’s noise floor.

A. Impact of Activity and Location

Numerous individual factors contribute to the path loss and
periodicity of the channel including antenna placement and di-
rection, multipath, and body shape. To integrate all these factors
would produce a complicated model that would not be practical
for BSN design. To generalize the results of our channel mod-
eling measurement campaign we will introduce two variables
that will account for all the different factors in a simple and
intuitive way. Even though extremely simple by design, these
factors are shown to predict the channel response with accuracy
sufficient for BSN design. The two variables are activity factor
(AF) and location factor (LF)

Activity Factor (AF) = amount of user movement. (4)

AF is a qualitative number between 0 and 1 that is approxi-
mated by knowing what a person is doing. If a person is com-
pletely still the AF is O and a full sprint is 1. Activity between
these extremes is qualitatively assigned an intermediate number
based on a best guess as to the relative level of activity. For ex-
ample, AF = 0.25 is someone working at a computer, AF =
0.5 is someone walking, and AF = 0.75 is someone jogging.
The frequency component of the path loss in (3) is then calcu-
lated as

.fPL = fmax -AF (5)

where fnax is the maximum capable frequency of the user’s
movement, which we assume is 2 Hz which is a good general
assumption. Under normal circumstances, it is highly unlikely
that an average person would exceed a fundamental repetition
rate greater than 2 Hz. From (5) we back-calculate the activity
factor for our measured results, which are reported in Table II.

opr, in (3) is dependent on AF, as well as a LF. LF is a quali-
tative measure of the relative motion between two sensors, nor-
malized between O and 1. An LF of 1 represents sensor loca-
tions that have a lot of movement relative to each other, e.g.,
wrist-to-wrist communication. An LF of O represents sensor lo-
cations with little to no relative movement, e.g., two sensors
on the chest. Location factor between these extremes is qual-
itatively assigned an intermediate number, e.g., LF = 0.25 for

hip-to-ankle, LF' = 0.5 for chest-to-wrist, and LF = 0.75 is
hip-to-wrist. opy, used in (3) is then calculated as

opL = ko - LF -logyo(1 + fpL) (0)

where k, is a data fitting parameter. Based on our controlled
experiments, ranging from standing to running with sensors at
various locations, k, = 15 results in the best overall fit.

The bottom plot of Fig. 15 shows the periodic model com-
pared to the same walking data as the top of the plot, but this
time using AF and LF. Using an AF and LF of 0.45 and 0.6,
respectively, show a close match, which is also close to our es-
timates of an AF of 0.5 for walking and an LF of 0.5 for chest
to wrist communication.

VI. IMPACT ON RADIO DESIGN

If we assumed that the transmitted power and antenna gain
are 0 dBm and 0 dB, respectively, then we can claim that the
sensitivity of the receiver is equivalent to the measured path
loss. Using our developed channel model we can determine the
tradeoff between communication time and receiver power using
representative receivers from literature: a low power receiver
[15] and a wake up receiver [7]. We will also include a com-
mercial Bluetooth low energy radio [17] for comparison.

A. Power Savings

Using the same channel data plotted in Fig. 15 with computed
AF, LF, and PL(d) values of 0.45, 0.6, and —52 dB, respec-
tively, we can compare the performance of the two low power
radios. A radio [15] with a power of 2.1 mW and a sensitivity
of —100 dBm would be the primary receiver in the BSN and al-
ways remain active. At 100% operation the total power would
be 2.1 mW and it can communicate 100% of the time. Using
the wakeup receiver [7] with a sensitivity of —56 dBm, one can
turn off the main receiver to save energy while leaving the wake
up receiver always listening for packets, or even utilize the wake
up receiver for low speed communication. By applying variables
determined from our channel model we calculate the percentage
of time the wake up receiver can communicate as

/2 — arcsin((Sgx — PL(d))/20p1.)

™

T, = (N
where Sgx is the sensitivity of the receiver and opy, is calculated
from (6) and (7), respectively. Using (8), we determine the wake
up receiver will communicate 64% of the time at a power con-
sumption of 65 pW. Utilizing channel periodicity by reducing
the receiver sensitivity results in a 32X power savings over the
standard low power radio while being able to communicate in
64% of the channel compared to 100%. Comparing against the
commercial Bluetooth radio, with a power of 58.6 mW and a
sensitivity of —87 dBm, this results in a 900X power savings.

B. Communication Performance

Assuming a MAC that reacts to the periodicity of the channel
and knowing the percentage of time one can communicate, the
time interval spent in the good channel region can be calculated.
Continuing with our example; given 64% communication time
and a frequency of 0.9 Hz, we can estimate the channel to be
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good for 711 ms at a time. Knowing the wake up receiver has a
data rate of 100 kb/s; one can transmit roughly 71 kb of infor-
mation during these periods of good channel communication as
seen in Fig. 16.

VII. CONCLUSION

In this paper, we proposed a simplified channel model to
complement the current WBAN path loss models by exploiting
channel periodicity in a BSN. We introduced custom hardware
used to collect the data needed for this analysis and the mea-
surement campaign designed to develop the model. We intro-
duced Activity and Location factors to allow computation of the
model’s parameters. We demonstrated this model by fitting it to
data collected during the measurement campaign. Finally, by
making informed decisions regarding these tradeoffs we were
able to show a power efficient design improvement example.
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