Design Considerations for Next Generation Wireless Power Aware Microsensor Nodes

D. Wentzloff, B. Calhoun, R. Min, A. Wang, N. Ickes, A. Chandrakasan

Massachusetts Institute of Technology
Emerging Microsensor Applications

Industrial Plants and Power Line Monitoring
(courtesy ABB)

Operating Room of the Future
(courtesy John Guttag)

Target Tracking & Detection
(Courtesy of ARL)

Location Awareness
(Courtesy of Mark Smith, HP)

NASA/JPL sensorwebs

Websign
Sensor System Requirements

Predictable Constraints

<table>
<thead>
<tr>
<th>Application Characteristics</th>
<th>Typical Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Rate</td>
<td>bps to kbps</td>
</tr>
<tr>
<td>Spatial Density</td>
<td>0.1-10 nodes/m²</td>
</tr>
<tr>
<td>Transmission Distance</td>
<td>10 – 100m</td>
</tr>
<tr>
<td>Extended Lifetime</td>
<td>5 years</td>
</tr>
<tr>
<td>Small Size</td>
<td>1 “AA” battery</td>
</tr>
</tbody>
</table>

Unpredictable Diversity

- **Network roles:** relay, sensor, aggregator
- **Environment:** event and signal statistics
- **User/Application:** required latency, quality

Application-specific designs provide energy efficient point solutions

Power-aware designs adapt energy consumption to operating conditions
Low-Rate Digital Computation

$I_{\text{leakage}} \propto 10^{(-V_T/S)}$

Energy Harvesting

MAC and Protocols

Energy-Scalable Algorithms

RF Innovations

API and Control

Power Aware Microsensor Networks
First Generation Wireless Microsensor

Sensor:
- Mic.
- Amp
- Low-Pass Filter
- ADC
- Battery

Processor:
- Static RAM
- Flash ROM
- Control
- FIFO
- Clock Recovery
- Shifter
- DC/DC Converter
- Processor
- FIFO

Radio:
- Radio IC
- Antenna
- Power Amp.
- 206MHz StrongARM
- 2.4GHz ISM band

Implemented on an FPGA

4-channel acoustic
- **Active Power Management**: DVS, variable ECC and packet size, variable transmit power, agile algorithms
OS-Controlled Power Down Modes

Data collection: 1024 samples at 1kSPS
(Processor alternates between idle/active)

LOB Calculation
(Processor active full-time)

Data transmission
(Radio transmitter active)

Sleep
(All systems power down)

Power (mW)

Time (s)

Processor Idle:
low = idle
high = active

Processor Sleep:
low = sleep
high = active or idle
Dynamic Voltage Scaling

Digitally adjustable DC-DC converter powers SA-1110 core

µOS selects appropriate clock frequency based on workload and latency constraints
Leakage: Low Duty Cycle Concern

Leakage Dominates Switching Energy for Low Duty Cycles – “Off” State-centric Optimization

\[I_{\text{leakage}} \propto 10^{-\frac{V_T}{S}} \]
- Fine-grain shutdown through regulators and bias control
- Variable 6-level PA allows efficient transmission for 10m to 100m
Energy = \(P_{\text{tx_electronics}} \left(T_{\text{transmit}} + T_{\text{start}} \right) + P_{\text{out}} T_{\text{transmit}} \)

- Significant loss in energy efficiency for small packet sizes

Startup Costs are Fundamental – Innovative Circuits and Protocols Required
Next Generation Sensor Nodes

Sensor System-on-a-Chip

- Compact Form Factor \((mm^3 – cm^3)\)
- Low Rate Radio link \((10-100kbs)\)
- System Power < 100\(\mu\)W

Energy Source and Regulation

- Sensor & A/D
- Sensor Specific Cores (FFT, Matched Filters, etc.)
- Low-End Sensor DSP Processor
- Protocol Processor (Baseband and MAC)
- RF Transceiver

Network API/Simulation

Region of Observation Base Station

- How to simulate 1000’s nodes?

Ultra-Wideband Radio

- High-speed & Low-power Time Domain Processing
- Police Train
- Simulink

Energy Processing

- How to Scavenge 100\(\mu\)W?

Ultra Low-Voltage Digital Circuits

- Design for 100mV Supply

Mixed-Signal Design

- How to Integrate RF & Digital?
Energy Scavenging: Vibration-to-Electric Energy

10\mu W from generator possible

MEMS Generator

Controller
“Software” Energy Dissipation is Dominated by Overhead and NOT by Useful Work
Leakage Mitigation Using MTCMOS

Device Sizing is a Major Concern in Multiple Threshold CMOS
Look at A=0 and B=1.
Sneak Leakage!!
Power Aware Architectures

Single butterfly architecture
(4 multipliers, 6 adders)

Control Logic

Twiddle Address

Twiddle ROM

R/W

A

B

W

Data Address

X

Y

Data Memory

Butterfly structure

FFT Computation

Power Scalable Multiplier
(modified Baugh-Wooley)

W

X=A+BW

Y=A-BW

Power Scalable Memory

Address (write/read)

data (write)

128x32

128x32

64x32

64x32

32x32

32x32

16x32

16x32

16x32

16x32

Control Logic

128x32

64x32

32x32

16x32

Adder used only in 16-bit mode
Adder used in 8-bit and 16-bit mode

Data (read)

8-bit feed through X{15:8}

input gating

Y{15:0}

X{15:0}

Z{15:0}
First Generation Power Aware FFT

Technology Parameters

- $0.18 \mu m$ process
- $2.1mm \times 3mm$
- $V_{T0n} = 0.45V$, $V_{T0p} = -0.44V$
- $V_{dd} = 1.8V$

Measured energy dissipation

<table>
<thead>
<tr>
<th>Points</th>
<th>8-bit</th>
<th>16-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>128 pt.</td>
<td>46 nJ</td>
<td>81 nJ</td>
</tr>
<tr>
<td>256 pt.</td>
<td>121 nJ</td>
<td>216 nJ</td>
</tr>
<tr>
<td>512 pt.</td>
<td>304 nJ</td>
<td>564 nJ</td>
</tr>
</tbody>
</table>

Power programmable from 128pts to 512pts and 8 bits and 16 bits
Energy Efficiency of Digital Computation

FFT Computation

Single butterfly architecture (4 multipliers, 6 adders)

Control Logic
Twiddle Address
Data Memory
Twiddle ROM
R/W
W
A
B
X=A+BW
Y=A-BW
Butterfly structure

Exploit Sub-threshold Operation for Sensor Circuits
Adaptive V_{DD}/V_T Architecture

Circuit to be biased to optimum V_{DD}/V_T point

- Lookup Table
- Power Converter
- Matched Delay Line
- Phase Detector
- N/P Body Bias Generator

[MAC, 166 kHz clock, Data]

[Miyazaki, ISSCC '02]
New Energy Metrics in DSM Interconnect

\[\lambda = \frac{C_I}{C_L} = 3 \]

```
<table>
<thead>
<tr>
<th># of transitions of cost E</th>
<th>Standard model</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th># of transitions of cost E</th>
<th>Sub-micron model</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
</tr>
</tbody>
</table>
```

Input Data (n bits) → Encoder → Extended Bus (n+a lines) → Decoder → Recovered Data

Minimizing Transition Activity is not the Right approach to Minimize Power
Computation vs. Communication

- Computation: 1nJ/op (μ-Processor) and Communication (@10m): 150nJ/bit
- @10 m: ~150 instructions/transmitted bit on a low-power processor
- @10m: > 1Million instructions/transmitted bit using dedicated hardware

Compute, Don’t Communicate
Fast Startup Transmitter

Data \rightarrow LPF

PFD

$\text{Variable loop filter}$

$\text{Variable loop filter}$

$\frac{f_{\text{ref}}}{N}$, $\frac{f_{\text{ref}}}{N+1}$

$\Sigma-\Delta$

channel

$E/\text{bit} = 10\text{nJ/bit}$

Fixed loop bandwidth

Variable loop bandwidth
New Opportunities: “Digital” UWB Radio

- Minimal Front-end components: leverage low-power digital circuits
- 3-4 bits A/D sufficient (Newaskar, Blazquez, Chandrakasan, SIPS ‘02)
Multihop and the Characteristic Distance

Direct Transmission

\[E = \alpha_1 + \alpha_2 D^2 \]

- Tx & Rx Radio Electronics
- Attenuation, power amp
- Path loss exponent

Multihop Transmission

\[E = h \left[\alpha_1 + \alpha_2 \left(\frac{D}{h} \right)^2 \right] \]

- Number of hops
- Per-hop distance

Characteristic Distance for Multihop Transmission

\[\min E = 2\alpha_1 \frac{D}{d_{\text{char}}} \]

where \[d_{\text{char}} = \sqrt{\frac{\alpha_1}{\alpha_2}} \]
Multi-Hop Routing Analysis

- Take advantage of dense sensor networks by using several shorter hops to transmit long distances.
- Plot of total power used to transmit a given distance for 1, 2, 3, and 4 hops:
 - Large power step in each trace from turning on external PA.
 - Trace out lowest curve for energy efficiency (i.e. use 3 hops @ 1000 m).
- Multi-hop routing is more energy efficient for this particular radio:
 - Adds overhead to the protocol.
 - Adds latency to the network.

![Diagram showing multi-hop routing with 1, 2, and 3 hops, and a direct hop.]
Power Aware API: performance of communication defined and exposed as a basis for trade-offs

- `set_max_energy(Energy energy)`
- `set_max_latency(Time latency)`
- `set_min_reliability(Prob probReception)`
- `set_range(int nearestNodes, Node[] who, float meters)`

Quality of communication defined along four axes:

<table>
<thead>
<tr>
<th>Concern</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>“To whom?”</td>
<td>Range (m)</td>
</tr>
<tr>
<td>“How soon?”</td>
<td>Latency (ms)</td>
</tr>
<tr>
<td>“How reliably?”</td>
<td>Reliability (BER)</td>
</tr>
<tr>
<td>“How much energy?”</td>
<td>Energy (µJ)</td>
</tr>
</tbody>
</table>
Energy scales gracefully with communication quality
Conclusions

- Exciting new applications enabled by a network of low-power wireless sensing devices
- Power Aware Design Methodology supersedes Energy Efficient Design
- *Slower is Better* – exploit sub-threshold operation as fastest switching speed is not needed
- *Communication-centric design*
 - Energy per operation (mW/MIPS) will scale with technology
 - Communication costs (nJ/bit) will not scale at the same rate