Last Name: \qquad
First Name: \qquad
ID Number: \qquad
Lab section: \qquad
Lecture section: \qquad
I have neither given nor received aid on this examination, nor have I concealed any violation of the Honor Code.
Signature: \qquad

EECS 206 Exam 1, 2006-2-10 DO NOT TURN THIS PAGE OVER UNTIL TOLD TO BEGIN!

- This is a 50 minute in-class exam.
- It is closed book, closed notes, closed computer.
- You may use one 8.5×11 " piece of paper, both sides, and a calculator.
- There are 20 problems for a total of 100 points. The questions are not necessarily in order of increasing difficulty.
- Do not spend too much time on one problem! If trouble, go on to another one. There is no partial credit.
- This exam has 4 pages. Make sure your copy is complete.
- Continuing to write anything after the ending time is announced will be considered an honor code violation.

Fill out your name etc. above now, and do not wait until the end to circle your answers!

- Clearly circle your final answers on this copy of the exam, not elsewhere.

1. (5 points)

Determine $2 \mathrm{e}^{\jmath \pi / 3}+2 \mathrm{e}^{-\jmath 2 \pi / 3}-1$.
a) -1
b) 1
c) $1+2 \sqrt{3} \jmath$
d) $1-2 \sqrt{3} \jmath$
e) $-1+2 \sqrt{3}$ ر
f) $-1-2 \sqrt{3}$ ر
2. (5 points)

Determine $\operatorname{Re}\left\{2 \mathrm{e}^{-\jmath \pi / 6}(1+\jmath \sqrt{3})\right\}$.
a) 0
b) $\sqrt{3}$
c) $-\sqrt{3}$
d) $2 \sqrt{3}$
e) $-2 \sqrt{3}$
f) 4

3. (5 points)

Determine x such that $2=\operatorname{Im}\left\{(x+\jmath \sqrt{3}) \mathrm{e}^{-\jmath \pi / 2}\right\}$.
a) -2
b) 2
c) $\jmath 2$
d) $-\jmath 2$
e) $\sqrt{3} / 2$
f) $-\sqrt{3} / 2$

4. (5 points)

If $M \mathrm{e}^{\jmath \phi}=(\sqrt{3}-\jmath)^{11}$, determine ϕ.
a) $\pi / 6$
b) $-\pi / 6$
c) $5 \pi / 6$
d) $-5 \pi / 6$
e) $11 \pi / 6$
f) $-11 \pi / 4$

5. (5 points)

Determine A such that $3 \cos (5 t+\pi / 2)+\cos (5 t-\pi / 2)=A \cos (5 t+\phi)$, for some constant ϕ.
a) 0
b) 1
c) 2
d) 3
e) 4
f) 5
6. (5 points)

Determine ϕ such that $\sin (\pi t)+\sin (\pi t+2 \pi / 3)=A \cos (\pi t+\phi)$, for some constant A.
a) 0
b) $-\pi / 6$
c) $\pi / 6$
d) $\pi / 3$
e) $-\pi / 3$
f) $2 \pi / 3$
7. (5 points)

For how many distinct values of A does $\cos (t)+A \cos (t+\pi / 7)=5 \cos (t+\pi / 4)$.
a) 0
b) 1
c) 2
d) 3
e) 4
f) ∞
8. (5 points)

Let $x(t)=\sin (3 \pi t+\pi / 4)+\cos (4 \pi t+\pi / 5)$ and $y(t)=\cos (2 \pi t+\pi / 3)$.
Determine the average power of $x(t)+y(t)$.
a) $1 / 4$
b) $1 / 2$
c) $3 / 4$
d) 1
e) $3 / 2$
f) 3
9. (5 points)

Determine the average value of the following periodic signal $x_{9}(t)$.

10. (5 points)

Let $y(t)=x_{9}(3+t / 2)$, where $x_{9}(t)$ was defined in the figure above. Determine the fundamental period of $y(t)$.
a) 1
b) 2
c) 3
d) 4
e) 6
f) 8

11. (5 points)

Which of the following values is closest to the average power of the signal $x_{9}(t)$ defined in the figure above?
a) 0
b) $1 / 2$
c) 1
d) 4
e) 8
f) 16
12. (5 points)

Consider the following signal $x_{12}(t)$.

Determine the support interval of the signal $x_{12}(1+t / 2)$.
a) $[0,4]$
b) $[1,2]$
c) $[1,3]$
d) $[1,5]$
e) $[3 / 2,5 / 2]$
f) $[2,4]$

13. (5 points)

Determine the energy of the signal $y(t)=x_{12}(t-2)$, where $x_{12}(t)$ was shown in the previous problem.
a) 1
b) $3 / 2$
c) 2
d) $5 / 2$
e) 3
f) 5

14. (5 points)

Determine the mean squared value of the signal $x_{12}(t)$ shown above.
a) 1
b) $3 / 2$
c) 2
d) $5 / 2$
e) 3
f) 5
15. (5 points)

A signal $x_{15}(t)$ has the following spectrum.

Spectrum of $x_{15}(t)$			
$2 \sqrt{2} \mathrm{e}^{\jmath 3 \pi / 4}$	4	$2 \sqrt{2} \mathrm{e}^{-\jmath}$	
$\mathrm{e}^{-\jmath \pi / 3}$			$\mathrm{e}^{3 \pi / 3}$
1			1
-6 -4	0	4	$6 f[\mathrm{kHz}]$

Determine the fundamental frequency of $x_{15}(t)$ in kHz .
a) $1 / 4$
b) $1 / 2$
c) 1
d) 2
e) 4
f) Aperiodic
16. (5 points)

Which of the following values is closest to the RMS value of the signal $x_{15}(t)$ having the spectrum shown above?
a) 0
b) 6
c) 12
d) 18
e) 24
f) 36

17. (5 points)

The signal $x_{15}(t)$ with spectrum shown above is passed through a filter that rejects all frequencies above 5 kHz . Determine the mean value of the output signal.
a) 0
b) 2
c) $2 \sqrt{2}$
d) $4 \sqrt{2}$
e) 4
f) $4+2 \sqrt{2}$
18. (5 points)

The signal $x_{15}(t)$ with spectrum shown above is passed through a filter that rejects all frequencies above 5 kHz . Call the output signal $y(t)$. Determine the RMS error between the input signal $x_{15}(t)$ and the output signal $y(t)$.
a) 1
b) $\sqrt{2}$
c) 2
d) $2 \sqrt{2}$
e) 4
f) $4 \sqrt{2}$
19. (5 points)

The signal $x_{15}(t)$ having the spectrum shown above can be written as a sum of a few signal components. Which of the following answers is one of those components?
a) 8
b) $\sqrt{2} \cos (8000 \pi t-3 \pi / 4)$
c) $2 \sqrt{2} \cos (8000 \pi t-3 \pi / 4)$
d) $2 \sqrt{2} \cos (4000 \pi t-3 \pi / 4)$
e) $4 \sqrt{2} \cos (8000 \pi t-3 \pi / 4)$
f) $4 \sqrt{2} \cos (4000 \pi t-3 \pi / 4)$
20. (5 points)

For the signal $x(t)=8 \cos ^{3}(100 \pi t)$, determine how many lines are in its line spectrum.
a) 1
b) 2
c) 3
d) 4
e) 5
f) 6

