Last Name:
First Name:
D Number:
Lab section:
Lecture section:

I have neither given nor received aid on this examination, nor have I concealed any violation of the Honor Code.
Signature:

EECS 206 Exam 1, 2006-2-10 DO NOT TURN THIS PAGE OVER UNTIL TOLD TO BEGIN!

- This is a 50 minute in-class exam.
- It is closed book, closed notes, closed computer.
- You may use one 8.5x11" piece of paper, both sides, and a calculator.
- There are 20 problems for a total of 100 points. The questions are not necessarily in order of increasing difficulty.
- Do not spend too much time on one problem! If trouble, go on to another one. There is no partial credit.
- This exam has 4 pages. Make sure your copy is complete.
- Continuing to write *anything* after the ending time is announced will be considered an honor code violation. *Fill out your name etc. above now, and do not wait until the end to circle your answers!*
- Clearly circle your final answers on this copy of the exam, not elsewhere.

1. (5 points) Determine 26	$e^{j\pi/3} + 2e^{-j2\pi/3}$	_ 1			
	b) 1 c) $1 + \frac{1}{2}$ c) $1 + \frac{1}{2}$	$2\sqrt{3}j$	d) $1 - 2\sqrt{3}j$	e) $-1 + 2\sqrt{3}j$	f) $-1 - 2\sqrt{3}j$
2. (5 points)					
	$e\left\{2\mathrm{e}^{-\jmath\pi/6}(1+\jmath\right.$	$\sqrt{3})\}$.			
a) 0	b) $\sqrt{3}$	c) $-\sqrt{3}$	d) $2\sqrt{3}$	e) $-2\sqrt{3}$	f) 4
3. (5 points)					
	such that $2 = \operatorname{Im} \{$	$(x+j\sqrt{3})e^{-j}$			
a) -2	b) 2	c) <i>j</i> 2	d) − <i>j</i> 2	e) $\sqrt{3}/2$	f) $-\sqrt{3}/2$
4. (5 points)					
	$\sqrt{3} - j$) ¹¹ , determined	mine ϕ .			
	b) $-\pi/6$		d) $-5\pi/6$	e) $11\pi/6$	f) $-11\pi/4$
5. (5 points) Determine A	such that $3\cos(5t)$	$+\pi/2) + \cos^{-1}$	$(5t - \pi/2) = A \cos(\theta - \pi/2)$	$\cos(5t+\phi)$, for some c	onstant ϕ .
a) 0	b) 1	c) 2	d) 3	e) 4	f) 5
6. (5 points) Determine φ	such that $\sin(\pi t)$ -	$\pm \sin(\pi t \pm 2\pi)$	$(3) - A\cos(\pi t +$	ϕ), for some constant	A
a) 0	b) $-\pi/6$	c) $\pi/6$	d) $\pi/3$	(ψ), for some constant e) $-\pi/3$	f) $2\pi/3$
7. (5 points)			\ / // // \		
For how man	y distinct values of b) 1	t A does $\cos(t - c) 2$	(b) $+A\cos(t + \pi/7)$ d) 3	$(t) = 5\cos(t + \pi/4)$. e) 4	f) ∞
,	,	~	,	<i>`</i>	<i>,</i>
8. (5 points)					
	$n(3\pi t + \pi/4) + c$ e average power of) and $y(t) = \cos(2$	$\pi t + \pi/3)$.	
a) $1/4$	b) 1/2	c) $3/4$	d) 1	e) 3/2	f) 3

			riodic signal $x_9(t)$			
			$1 x_9(t)$			
		2				
		1				
-						
	-3	-1	1 2	3 4 5		
) 1/2	b) 2/3	c) 3/4	d) 4/5	e) 5/4	f) 3/2	
0. (5 points)					
					ndamental period of	y(t)
l) 1	b) 2	c) 3	d) 4	e) 6	f) 8	
1 (5 maint	<u>`````````````````````````````````````</u>					
1. (5 points Which of the		s is closest to the av	verage power of the	e signal $x_9(t)$ define	d in the figure above	?
.) 0	b) 1/2	c) 1	d) 4	e) 8	f) 16	
2. (5 points)					
			$2 \frac{1}{2}$	$c_{12}(t)$	1	
			1 -			
				$1 2 \frac{5}{2} 3$	$\overrightarrow{3}$ t	
	following signal the support interva	$x_{12}(t)$. <i>d</i> of the signal $x_{12}(t)$	1 + t/2).	<u> </u>		
ı) [0,4]	b) [1,2]	c) [1,3]	d) [1,5]	e) [3/2,5/2]	f) [2,4]	
				[5/2, 5/2]	1) [2,1]	
			-/[-,-]	c) [3/2,3/2]	1) [2, 1]	
-						
	ne energy of the si		(-2) , where $x_{12}(t)$) was shown in the p	revious problem.	
Determine th		ignal $y(t) = x_{12}(t$ c) 2				
Determine th	he <i>energy</i> of the si b) 3/2		(-2) , where $x_{12}(t)$) was shown in the p	revious problem.	
Determine the 1) 1 4. (5 points Determine the	b) 3/2	c) 2 <i>value</i> of the signal a	(-2) , where $x_{12}(t)$ d) 5/2) was shown in the p e) 3 re.	revious problem. f) 5	
Determine th	b) 3/2	c) 2	(-2) , where $x_{12}(t)$ d) 5/2) was shown in the p e) 3	revious problem.	

9. (5 points) Determine the *average value* of the following periodic signal $x_0(t)$.

15. (5 points)

A signal $x_{15}(t)$ has the following spectrum.

C 10		•	Spectrum of $x_{15}(t)$			
		$2\sqrt{2} e^{j 3\pi/4}$	4	$2\sqrt{2} e^{-j 3\pi}$	/4	
	e ^{-jπ/3}	3			$e^{j\pi/3}$	
	-6	-4	0	4	6 <i>f</i> [kHz]	
Determine th	he fundamental fre	equency of $x_{15}(t)$) in kHz.			
a) 1/4	b) 1/2	c) 1	d) 2	e) 4	f) Aperiodic	
16. (5 points						
	-			,	ving the spectrum sho	wn above?
a) 0	b) 6	c) 12	d) 18	e) 24	f) 36	
17. (5 points	5)					
The signal <i>a</i>				a filter that reje	ects all frequencies ab	ove 5 kHz
a) 0	b) 2	c) $2\sqrt{2}$. d) $4\sqrt{2}$	e) 4	f) $4 + 2\sqrt{2}$	
	$x_{15}(t)$ with spectrum				ects all frequencies ab $_{5}(t)$ and the output sig	
a) 1	b) $\sqrt{2}$	c) 2	d) $2\sqrt{2}$	e) 4	f) $4\sqrt{2}$	5nur g (0).
Which of the a) 8		rs is <i>one</i> of those c) $2\sqrt{2}$ co	e components? $\cos(8000\pi t - 3\pi/4)$	e) $4\sqrt{2}$ e	few signal component $\cos(8000\pi t - 3\pi/4)$ $\cos(4000\pi t - 3\pi/4)$	s.
	5)					

20. (5 points)

For the signal $x(t) = 8\cos^3(100\pi t)$, determine how many lines are in its line spectrum. a) 1 b) 2 c) 3 d) 4 e) 5 f) 6