ASSIGNED: Mar. 31, 2006. READ: Part 8 of Official Lecture Notes (available on-line).
DUE DATE: Apr. 07, 2006. TOPICS: Poles \& zeros \& frequency response; exam review.
Show work on separate sheets of paper. Include all hand and Matlab plots and code. This entire problem set consists of problems from previous EECS 206 Exams \#3.
[10] 1. Rewrite $\frac{1}{2}(1+j)(j)^{n}+\frac{1}{2}(1-j)(-j)^{n}$ entirely in terms of sinusoids.
[10] 2. Determine a (2,2) ARMA difference equation having the gain fumction
$\left|H\left(e^{j \omega}\right)\right|=\sqrt{(3+4 \cos \omega)^{2}+16 \sin ^{2} \omega} / \sqrt{(1+2 \cos \omega)^{2}+4 \sin ^{2} \omega}$.
[10] 3. Determine the simplest MA system that eliminates $3 \cos \left(\frac{\pi}{2} n\right)+4 \cos (\pi n)$.
[10] 4. A system has difference eqn. $5 y[n]+3 y[n-1]+y[n-2]=7 x[n]+6 x[n-1]-x[n-2]$. Compute the response $y[n]$ if the input $x[n]=9+2 \cos \left(\frac{\pi}{2} n\right)+3 \cos (\pi n)$.
[10] 5. System has pole Output y $[\mathrm{n}]=9 \delta[\mathrm{n}-1]$
-zero diagram: if the input $\mathrm{x}[\mathrm{n}]=$ what?

[10] 6. Compute the inverse z-transform of $\frac{z^{2}-5 z+6}{z^{2}(z-1)}$. Hint: Do not use partial fractions.
[10] 7. The filter eliminating $\omega=\frac{\pi}{3}$ and $\omega=\frac{2 \pi}{3}$ has impulse response $h[n]=$?
[10] 8. Draw the pole-zero plot for a filter that will eliminate a signal having period=8 while having as little effect as possible on any other signals that may be present.
[10] 9. $\left[(z-0.7)\left(z^{2}+1\right)(z+1)\right] /\left[\left(z-0.8 e^{j \pi / 3}\right)\left(z-0.8 e^{-j \pi / 3}\right)\left(z-0.9 e^{j 3 \pi / 4}\right)\left(z-0.9 e^{-j 3 \pi / 4}\right)\right]$. Sketch the relative magnitude of its frequency response (i.e., gain function).
[10] 10. $x[n] \rightarrow \underline{|y[n]=x[n]+x[n-1]+x[n-2]+\ldots+x[n-5]+x[n-6]+x[n-7]|} \rightarrow y[n]$
Here input $x[n]$ is a zero-mean, real-valued, and periodic signal having period $=8$.
Make a stem plot of $y[n]$. Don't worry about the vertical scale.
"Demographer: someone who thinks the average Miamian is born Cuban and dies Jewish."

