NOTE: See DFT: Discrete Fourier Transform for more details.
GIVEN: A periodic continuous-time signal $x(t)$ such that:

1. $x(t)$ is periodic and real: $x(t)=x(t+T)$ for all t;
2. $x(t)$ is bandlimited: No frequencies above $F \mathrm{~Hz}$;
3. $x(t)$ is sampled: Given samples $x[n]=x(t=n \Delta)$.

GOAL: We can reconstruct $x(t)$ from its samples $x[n]=x(t=n \Delta)$
IF: $\Delta<1 /(2 F) \Leftrightarrow$ Sampling rate $>2 F \frac{\text { SAMPLES }}{\text { SECOND }}$.

DERIVATION USING EECS 206 CONCEPTS ONLY

1. $x(t)$ periodic with period $T \rightarrow x(t)$ has the Fourier series expansion $x(t)=X_{0}+X_{1} e^{j \frac{2 \pi}{T} t}+X_{2} e^{j \frac{4 \pi}{T} t}+\ldots X_{N} e^{j \frac{2 \pi}{T} N t}+X_{1}^{*} e^{-j \frac{2 \pi}{T} t}+\ldots X_{N}^{*} e^{-j \frac{2 \pi}{T} N t}$
where: $X_{k}=\frac{1}{T} \int_{0}^{T} x(t) e^{-j 2 \pi \frac{k t}{T}} d t$ and $\frac{N}{T}<F<\frac{N+1}{T}$. Say $F=\frac{N+1 / 2}{T}$.
Note: We will not need to use the formula for X_{k} ! No integrals here!
2. Hence $x(t)$ is specified by $2 N+1$ complex numbers $\left\{X_{-N} \ldots X_{0} \ldots X_{N}\right\}$.
3. Sample $x(t)$ at $t=n \Delta$ so there are $(2 N+1)$ samples per period T.
$\rightarrow(2 N+1) \Delta=T$. This and $\left(N+\frac{1}{2}\right)=F T \rightarrow \Delta=\frac{1}{2 F}$.
4. Then setting $t=n \Delta=\frac{n}{2 F}, n=0 \ldots 2 N$ in the Fourier series gives $(2 N+1)$ linear equations in $(2 N+1)$ unknowns $\left\{X_{k}\right\}$:
5. $x(n \Delta)=\sum_{k=-N}^{N} X_{k} e^{\frac{j 2 \pi n k}{2 N+1}}, n=0 \ldots 2 N$. Sum over different period:
$\rightarrow x(n \Delta)=\sum_{k=0}^{2 N} \quad X_{k} e^{\frac{j 2 \pi n k}{2 N+1}}, n=0 \ldots 2 N((2 N+1)$-point DFT $)$.
6. We can solve this linear system for the $\left\{X_{k}\right\}$ and insert these $\left\{X_{k}\right\}$ into the Fourier series in \#1 above to get $x(t)$ for ALL values of t.

BANDLIMITED SIGNAL INTERPOLATION FORMULA

7. Or, we can note that the solution to this linear system is:
$X_{k}=\frac{1}{2 N+1} \sum_{n=0}^{2 N} x(n \Delta) e^{-\frac{j 2 \pi n k}{2 N+1}}, k=-N \ldots N((2 N+1)$-point DFT $)$
8. Inserting this into the Fourier series and using $\frac{t}{T}-\frac{n}{2 N+1}=\frac{t-n \Delta}{T}$ gives

$$
x(t)=\sum_{k=-N}^{N} \frac{1}{2 N+1} \sum_{n=0}^{2 N} x(n \Delta) e^{-\frac{j 2 \pi n k}{2 N+1}} e^{j \frac{2 \pi}{T} k t}=\sum_{n=0}^{2 N} x(n \Delta) s(t-n \Delta)
$$

where $s(t)=\frac{1}{2 N+1} \sum_{k=-N}^{N} e^{j 2 \pi k t / T}=\frac{\sin [(2 N+1) \pi t / T]}{(2 N+1) \sin (\pi t / T)}$ (text p.145).
9. NOTE: This holds for any value of T, e.g., $T=1$ century!
10. Shannon proved this for aperiodic signals (think of this as $T \rightarrow \infty$). Note: As $T \rightarrow \infty, s(t) \rightarrow \frac{\sin (\pi t / \Delta)}{\pi t / \Delta}=\operatorname{sinc}(t / \Delta)=p(t)$ in the lecture notes since: $\frac{2 N+1}{T}=\frac{1}{\Delta}$ and $\sin \left(\pi \frac{t}{T}\right) \approx\left(\pi \frac{t}{T}\right)$ as $\left(\pi \frac{t}{T}\right) \rightarrow 0 \Leftrightarrow(T \rightarrow \infty)$.

EX: $x(t)$ has period $=\mathrm{T}=10 \mathrm{sec}$; bandlimit $=\mathrm{F}=100 \mathrm{~Hz}$. Then $\Delta=\frac{1}{200.1}$. since: Fourier series of $x(t)$ has 2001 terms $\rightarrow 2001$ samples per period=T.

ALIASING IN A COMPLETE DSP SYSTEM

Given: $x(t) \rightarrow \overline{\overline{\mid \text { SAMPLE }} \mid} \rightarrow x[n] \rightarrow \overline{	$	INTEREAL(SINC)
IDELATOR	$} \rightarrow \hat{x}(t)$	

where: $x(t)=\cos (2 \pi t)+2 \cos (8 \pi t)(1 \mathrm{~Hz}, 4 \mathrm{~Hz})$. GOAL: Compute $\hat{x}(t)$.
Ideal Interpolator: $\hat{x}(t)=\sum x[n] p\left(t-n T_{s}\right)$ where $p(t)=\operatorname{sinc}\left(t / T_{s}\right)$. sinc: $\operatorname{sinc}(t)=(\sin (\pi t)) /(\pi t)=$ decaying sinusoid as $|t| \rightarrow \infty$.
Nyquist: Sampling rate $=5 \mathrm{~Hz}<2($ max. frequency of $x(t))=2(4 \mathrm{~Hz}) \rightarrow$ aliasing. Interval: Sampling rate $=5 \mathrm{~Hz} \rightarrow T_{s}=$ Sampling interval $=1 /(5 \mathrm{~Hz})=\frac{1}{5}$ second.
Sample: $t=n T_{s}=n\left(\frac{1}{5}\right) \rightarrow x[n]=x\left(\frac{t}{5}\right)=\cos (0.4 \pi n)+2 \cos (1.6 \pi n)$.
Alias: $2 \cos (1.6 \pi n)=2 \cos (0.4 \pi n) \rightarrow x[n]=3 \cos (0.4 \pi n)$. Note tripled!
Ideal: $n=\frac{t}{T_{s}}=5 t \rightarrow \hat{x}(t)=x[n=5 t]=3 \cos (2 \pi t)(1 \mathrm{~Hz}$, but tripled).
Note: Original $4 \mathrm{~Hz} \rightarrow$ aliased 1 Hz (folded across folding freq. $=\frac{5}{2}=2.5 \mathrm{~Hz}$).
Now: Change $x(t)$ to $x(t)=\cos (2 \pi t)-\cos (8 \pi t)(1 \mathrm{~Hz}, 4 \mathrm{~Hz})$.
Alias: $x[n]=\cos (0.4 \pi n)-\cos (0.4 \pi n)=0!1 \mathrm{~Hz}$ eliminated!
Aliasing: adds false signals, interferes with actual signal!
Now: Insert ideal antialias filter: Lowpass; pass $<2.5 \mathrm{~Hz}$, reject $>2.5 \mathrm{~Hz}$.

Given: $x(t) \rightarrow \underline{\left.\right|_{\text {ALIAS }} ^{\text {ANTI- }} \mid} \rightarrow \underline{$\begin{tabular}{|c|}
\hline SAMPLE \mid

AT 5 HZ

$} \rightarrow x[n] \rightarrow \underline{$

INTEAL(SINC)

INTERPOLATOR
\end{tabular}$} \rightarrow \hat{x}(t)$

Now: Antialias filter eliminates original $2 \cos (8 \pi t)(4 \mathrm{~Hz})$ component.
Get: $x[n]=\cos (0.4 \pi n)$ and $\hat{x}(t)=\cos (2 \pi t)(1 \mathrm{~Hz})$.
Note: Aliased (false) 1 Hz eliminated. Original 1 Hz unaffected, at least.
Alias: Use $A \cos \left(\left(\pi+\omega_{o}\right) n+\theta\right)=A \cos \left(\left(\omega_{o}-\pi\right) n+\theta\right)=A \cos \left(\left(\pi-\omega_{o}\right) n-\theta\right)$ since: $\cos (t)$ is an even function, and also periodic with period 2π.
EX: $3 \cos \left(1.7 \pi n+\frac{\pi}{6}\right)=3 \cos \left(0.3 \pi n-\frac{\pi}{6}\right) . \quad \sin (1.8 \pi n)=-\sin (0.2 \pi n)$.

- Use to reduce all discrete-time signals resulting from sampling.
- For non-sinusoidal signals: Apply to Fourier series harmonics.

MSD: $\operatorname{MSD}(x, \hat{x})=\frac{1}{T} \int_{0}^{T}(x(t)-\hat{x}(t))^{2} d t=$ Mean Square Error.
How? Use Parseval's theorem to add average power in each harmonic:
Note: Average power of $A \cos \left(\omega_{o} n+\theta\right)$ is $A^{2} / 2$.
IF: $(1) \omega_{0}=2 \pi\binom{$ RATIONAL }{ NUMBER }\rightarrow periodic; $(2) \omega_{0} \neq 0, \pi$.

