EECS 206

LECTURE NOTES

SAMPLING THEOREM FOR PERIODIC SIGNALS

NOTE: See *DFT: Discrete Fourier Transform* for more details.

GIVEN: A periodic continuous-time signal x(t) such that:

- 1. x(t) is **periodic** and real: x(t) = x(t+T) for all t;
- 2. x(t) is **bandlimited**: No frequencies above F Hz;
- 3. x(t) is sampled: Given samples $x[n] = x(t = n\Delta)$.

GOAL: We can reconstruct x(t) from its samples $x[n] = x(t = n\Delta)$ **IF:** $\Delta < 1/(2F) \Leftrightarrow$ Sampling rate $> 2F \frac{\text{SAMPLES}}{\text{SECOND}}$.

DERIVATION USING EECS 206 CONCEPTS ONLY

1. x(t) periodic with period $T \to x(t)$ has the Fourier series expansion $x(t) = X_0 + X_1 e^{j\frac{2\pi}{T}t} + X_2 e^{j\frac{4\pi}{T}t} + \dots X_N e^{j\frac{2\pi}{T}Nt} + X_1^* e^{-j\frac{2\pi}{T}t} + \dots X_N^* e^{-j\frac{2\pi}{T}Nt}$

where: $X_k = \frac{1}{T} \int_0^T x(t) e^{-j2\pi \frac{kt}{T}} dt$ and $\frac{N}{T} < F < \frac{N+1}{T}$. Say $F = \frac{N+1/2}{T}$.

Note: We will not need to use the formula for X_k ! No integrals here!

- 2. Hence x(t) is specified by 2N+1 complex numbers $\{X_{-N} \dots X_0 \dots X_N\}$.
- 3. Sample x(t) at $t = n\Delta$ so there are (2N + 1) samples per period T.
- $\rightarrow (2N+1)\Delta = T$. This and $(N+\frac{1}{2}) = FT \rightarrow \Delta = \frac{1}{2F}$.
- 4. Then setting $t = n\Delta = \frac{n}{2F}$, $n = 0 \dots 2N$ in the Fourier series gives (2N+1) linear equations in (2N+1) unknowns $\{X_k\}$:
- 5. $x(n\Delta) = \sum_{k=-N}^{N} X_k e^{\frac{j2\pi nk}{2N+1}}, n = 0 \dots 2N$. Sum over different period: $\rightarrow x(n\Delta) = \sum_{k=0}^{2N} X_k e^{\frac{j2\pi nk}{2N+1}}, n = 0 \dots 2N$ ((2N + 1)-point DFT).
- 6. We can solve this linear system for the $\{X_k\}$ and insert these $\{X_k\}$ into the Fourier series in #1 above to get x(t) for ALL values of t.

BANDLIMITED SIGNAL INTERPOLATION FORMULA

7. Or, we can note that the solution to this linear system is: $X_{k} = \frac{1}{2N+1} \sum_{n=0}^{2N} x(n\Delta) e^{-\frac{j2\pi nk}{2N+1}}, k = -N \dots N ((2N+1)\text{-point DFT})$ 8. Inserting this into the Fourier series and using $\frac{t}{T} - \frac{n}{2N+1} = \frac{t-n\Delta}{T}$ gives $x(t) = \sum_{k=-N}^{N} \frac{1}{2N+1} \sum_{n=0}^{2N} x(n\Delta) e^{-\frac{j2\pi nk}{2N+1}} e^{j\frac{2\pi}{T}kt} = \sum_{n=0}^{2N} x(n\Delta)s(t-n\Delta)$ where $s(t) = \frac{1}{2N+1} \sum_{k=-N}^{N} e^{j2\pi kt/T} = \frac{\sin[(2N+1)\pi t/T]}{(2N+1)\sin(\pi t/T)}$ (text p.145).

9. NOTE: This holds for any value of T, e.g., T=1 century!

10. Shannon proved this for aperiodic signals (think of this as $T \to \infty$). **Note:** As $T \to \infty$, $s(t) \to \frac{\sin(\pi t/\Delta)}{\pi t/\Delta} = \operatorname{sinc}(t/\Delta) = p(t)$ in the lecture notes since: $\frac{2N+1}{T} = \frac{1}{\Delta}$ and $\sin(\pi \frac{t}{T}) \approx (\pi \frac{t}{T})$ as $(\pi \frac{t}{T}) \to 0 \Leftrightarrow (T \to \infty)$.

EX: x(t) has period=T=10 sec; bandlimit=F=100 Hz. Then $\Delta = \frac{1}{200.1}$. since: Fourier series of x(t) has 2001 terms \rightarrow 2001 samples per period=T.

EEC	LECTU:	RE NOTES	Fall 2005
ALIASING IN A COMPLETE DSP SYSTEM			
Given:	$x(t) \rightarrow \overline{\left \begin{array}{c} \mathbf{SAMPLE} \\ \mathbf{AT 5 HZ} \end{array} \right } \rightarrow x[n] \rightarrow \overline{\left \begin{array}{c} \mathbf{I} \end{array} \right }$	$\frac{\text{IDEAL}(\text{SINC})}{\text{NTERPOLATOR}} \to \hat{x}(t)$	
where:	$x(t) = \cos(2\pi t) + 2\cos(8\pi t) \ (1$	Hz, 4 Hz). GOAL: Compu	te $\hat{x}(t)$.
Ideal sinc:	Interpolator: $\hat{x}(t) = \sum x[n]p(x(t)) = \frac{1}{2} \frac{x(t)}{\pi} = \frac{1}{2}$	$(t - nT_s)$ where $p(t) = \operatorname{sinc}(t)$ ng sinusoid as $ t \to \infty$.	$t/T_s).$
Nyquist: Interval: Sample:	Sampling rate=5 Hz<2(max. fr Sampling rate=5 Hz \rightarrow T _s =Sam $t = nT_s = n(\frac{1}{5}) \rightarrow x[n] = x(\frac{t}{5})$	requency of $x(t) = 2(4 \text{ Hz})$ pling interval $= 1/(5 \text{ Hz}) = \frac{1}{5}$ $= \cos(0.4\pi n) + 2\cos(1.6\pi n)$	→ aliasing. second. •
Alias: Ideal: Note:	$2\cos(1.6\pi n) = 2\cos(0.4\pi n) \rightarrow x$ $n = \frac{t}{T_s} = 5t \rightarrow \hat{x}(t) = x[n = 5t]$ Original 4 Hz→aliased 1 Hz (for	$v[n] = 3\cos(0.4\pi n)$. Note tr = $3\cos(2\pi t)$ (1 Hz, but tri- olded across folding freq.= $\frac{5}{2}$	ipled! i pled). =2.5 Hz).
Now: Alias:	Change $x(t)$ to $x(t) = \cos(2\pi t)$ $x[n] = \cos(0.4\pi n) - \cos(0.4\pi n)$ Aliasing: adds false signals, intervals	$-\cos(8\pi t) (1 \text{ Hz}, 4 \text{ Hz}).$ = 0! 1 Hz eliminated ! erferes with actual signal!	
Now:	Insert ideal antialias filter: Low	vpass; pass<2.5 Hz, reject>2	2.5 Hz.
Given:	$x(t) \rightarrow \overline{\left \begin{array}{c} \mathbf{ANTI-} \\ \mathbf{ALIAS} \end{array} \right } \rightarrow \overline{\left \begin{array}{c} \mathbf{SAMPLE} \\ \mathbf{AT5HZ} \end{array} \right }$	$\rightarrow x[n] \rightarrow \overline{ \frac{\text{IDEAL}(\text{SINC})}{ \text{INTERPOLATOR}}}$	$\underline{y} \rightarrow \hat{x}(t)$
Now: Get: Note:	Antialias filter eliminates origin $x[n] = \cos(0.4\pi n)$ and $\hat{x}(t) = \cos(0.4\pi n)$ Aliased (false) 1 Hz eliminated.	hal $2\cos(8\pi t)$ (4 Hz) composises $(2\pi t)$ (1 Hz). Original 1 Hz unaffected	nent. , at least.
Alias: since: EX:	Use $A\cos((\pi + \omega_o)n + \theta) = A\cos(0.5\pi n)$ $\cos(t)$ is an even function, and $3\cos(1.7\pi n + \frac{\pi}{6}) = 3\cos(0.3\pi n)$	$s((\omega_o - \pi)n + \theta) = A\cos((\pi \tan \theta)) = A\cos((\pi \tan \theta))$	$\overline{-\omega_o)n- heta)}$ r. $0.2\pi n).$
•	Use to reduce all discrete-time For non-sinusoidal signals:	signals resulting from sau Apply to Fourier series har	npling . monics.
MSD: How?	$MSD(x, \hat{x}) = \frac{1}{T} \int_0^T (x(t) - \hat{x}(t))$ Use Parseval's theorem to add	^{2}dt =Mean Square Error. average power in each harm	ionic:

Note: Average power of $A\cos(\omega_o n + \theta)$ is $A^2/2$. **IF:** (1) $\omega_0 = 2\pi ({}^{\text{RATIONAL}}_{\text{NUMBER}}) \rightarrow \text{periodic};$ (2) $\omega_0 \neq 0, \pi$.

