1. This is the differential amplifier (page 200 of text).

$$V_O = \frac{18k(30k+20k)}{30k(6k+18k)}(12V) - \frac{20k}{30k}(24V) = -1V \rightarrow i_L = \frac{-1V}{5k} = -0.2mA.$$

- 2. $i_n = 0 \rightarrow V_o = V_n + (1mA)(9k) = 9V$ since $V_n = V_p = 0$. $-i_O = \frac{9V}{15k||6k} + 1mA = 3.1mA \rightarrow i_O = -3.1mA.$
- 3. Thevenin equivalent of input is $V_T = v_g(\frac{4.8}{3.2+4.8}) = 0.3V$, $R_T = 4.8k||3.2k = 1.92k\Omega$. Inverting amplifier (text p.196) $\rightarrow V_O = -\frac{30k + \sigma 170k}{1.92k}(0.3V) = -(26.5625\sigma + 4.6875)$. This reaches -10 when $\sigma = 0.20$. Hence no saturation for $0 < \sigma < 0.20$.
- 4. Inverting summer: $v_o = -(\frac{72k}{R_a}v_a + \frac{72k}{R_b}v_b + \frac{72k}{R_c}v_c + \frac{72k}{R_d}v_d) = -(6v_a + 9v_b + 4v_c + 3v_d).$ $\rightarrow R_a = 12k\Omega; \quad R_b = 8k\Omega; \quad R_c = 18k\Omega; \quad R_d = 24k\Omega.$

5a.
$$P_{16k\Omega} = \frac{(0.32V)^2}{16k\Omega} = 6.4\mu W.$$
(b) $(0.32V)(\frac{16k}{48k+16k}) = 0.08V.$ $P_{16k\Omega} = \frac{(0.08V)^2}{16k\Omega} = 0.4\mu W.$

- 5c. Ratio= $\frac{6.4\mu W}{0.4\mu W}$ = 16. (d) This circuit isolates the weak 320 mV source from the load. The op-amp supplies current and voltage so that its output follows the input.
- 6. Noninverting amp with input $v_g \frac{5.6k}{2.4k+5.6k} = 0.7v_g$ and gain $1 + \frac{75k}{15k} = 6$. Without saturation, $v_o(t) = 6(0.7)10\sin(\pi/3)t = 42\sin(\pi/3)t$ for t > 0. With saturation at $\pm 21V$, the sine wave clips at $\pm 21V$.

7a.
$$i_n=0 \rightarrow v=v_p=v_n=v_o(\frac{R}{R+R})=\frac{v_o}{2} \rightarrow v_o=2v.$$
 $i_p=0 \rightarrow v_o=v-iR.$ Combining these $\rightarrow 2v=v-iR \rightarrow v=-iR.$ QED.

7b. But this relation only holds as long as the op-amp doesn't saturate, i.e., $|v_o| < 15V$. So the circuit acts like a negative resistor only over a limited range of v and i.