EECS 216 – Winter 2008

Homework #1 – Assigned Jan. 8 – Due Tuesday Jan. 15

Grading: Not all problems will be graded, but you should do all of them. **Submission:** Submit in *black box in room 4230 EECS* **before** 5 pm on Tuesday. **Relevant Lectures:** January 8-10.

Relevant Reading in Textbook: Chapter 1 (elementary signals and operations); Appendix A (review (?) of complex numbers)

- 1. (15 points: 5+5+5) Consider the RLC circuit in Fig. P2.25 on p. 104.
 - (a) Use complex impedance technique from EECS 215 to find the frequency response function $H(j\omega)$ from input x(t) to output $y(t) = v_C(t)$.
 - (b) Set R = 0.1, C = 1, and L = 1. Use Matlab to plot the magnitude and the phase of $H(j\omega)$ as a function of ω ; use Matlab's freqs or bode.
- 2. (15 points: 5+5+5) For the complex numbers $z_1 = 3-4j$ and $z_2 = 12+5j$:
 - (a) Express z_1 in complex exponential (polar) form
 - (b) Compute $(z_1 + z_2^*)^2$
 - (c) Compute z_1/z_2
- 3. (10 points) Simplify as much as possible: $sin(t) + cos(t + 30^{\circ}) + cos(t + 150^{\circ})$
- 4. (15 points: 3+3+3+3+3) Text, #1.6 p. 35. Periodic signals.
- 5. (15 points: 5+5+5) Text #1.11(a),(b) p. 36. Scaling and shifting. For (b) do only x(-3t-2) and $x(\frac{2}{3}t+\frac{1}{2})$
- 6. (15 points: 3+3+3+3+3) Text #1.13(a),(b),(e),(f),(g) p. 36. Signal ops.
- 7. (15 points: 5+5+5) Text #1.16 p. 37 (only for $x_2(t), x_4(t), x_6(t)$).