EECS 216 - Winter 2008

Homework \#5 - Assigned Feb. 12 - Due Tuesday Feb. 19

- Grading: Not all problems will be graded, but you should do all of them.
- Submission: Submit in black box in room 4230 EECS before 5:00 on Tues. Feb. 19.
- Read: Text sections 3.3-3.5 (skip 3.2). Topic: Fourier Series expansions.
- Next week: Fourier transforms. Assigned before, and due after, winter break.
- Suggestion: Get started on HW \#6 early and finish it before winter break.

1. (15 points: 5@3) Text \#3.21. Even and odd functions make your life easier!
2. (15 points: 3@5) Text \#3.29abc. Bode plots for RC circuit. EECS 215 problem.
3. (20 points) Text \#3.9. Trigonometric Fourier series of half-wave rectified cosine.

- Use the trig identity $2 \cos (x) \cos (y)=\cos (x+y)+\cos (x-y)$, but watch limits.
- You already know the answer - see last two problems of HW \#4. Now derive it.

4. (5 points) Text \#3.8. Complex exponential form of \#3.9.

- Multiply $\cos (t)=\frac{1}{2} e^{j t}+\frac{1}{2} e^{-j t}$ by $e^{j n t}$, but watch limits.
- But if you have any sense you'll just use the result of $\# 3.9$, which is much easier.

5. (25 points) Text \#3.15ab. Fourier series of periodic extension of t^{2}.

- Use indefinite integral $\int t^{2} \cos (a t) d t=\frac{1}{a^{2}} 2 t \cos (a t)+\frac{1}{a^{3}}\left(a^{2} t^{2}-2\right) \sin (a t)+C$
- The answer is given in the problem. You still must derive it.

6. (20 points) Text $\# 3.18$. Fourier series of impulse trains.

We will use this result to derive the sampling theorem.

