EECS 451 POLES & ZEROS AND FREQUENCY RESPONSE

Given: Locations of zeros $\{z_1 \dots z_M\}$ and poles $\{p_1 \dots p_N\}$ of a filter. **Goal:** Shape of gain function= $|H(\omega)|$ =magnitude of frequency response.

- $\mathbf{H}(\mathbf{z}): \ H(z) = \frac{(z-z_1)(z-z_2)\dots(z-z_M)}{(z-p_1)(z-p_2)\dots(z-p_N)} \text{ (ignore any constant in front)}.$
- $\mathbf{H}(\mathbf{w}): |H(\omega)| = [|e^{j\omega} z_1| \dots |e^{j\omega} z_M|]/[|e^{j\omega} p_1| \dots |e^{j\omega} p_N|].$
 - What does each of these terms contribute to gain $|H(\omega)|$?

Zeros: Let n^{th} zero $z_n = e^{j\omega_n}$. Then $|e^{j\omega} - z_n| = 0$ at $\omega = \omega_n$.

- Gain $|H(\omega_o)| = 0$ if there is a zero at $e^{j\omega_o}$ (on the unit circle |z| = 1).
- Gain $|H(\omega_o)| \approx 0$ if there's a zero at $Ae^{j\omega_o}$, $A \approx 1$ (near the unit circle).

Poles: Let n^{th} pole $p_n = Ae^{j\omega_n}, A \approx 1$. Then $\frac{1}{|e^{j\omega} - p_n|} = \frac{1}{|A-1|}$ at $\omega = \omega_n$.

- Gain $|H(\omega_o)|$ is large if there is a pole at $Ae^{j\omega_o}$ (near |z|=1).
- 1. Start on the unit circle at $\omega = 0 \rightarrow z = e^{j\omega} = 1$.
- 2. Trace along the unit circle counterclockwise (increasing ω)
- 3. When pass a zero at $Ae^{j\omega_m}$, $A \approx 1$, gain dips at ω_m .
- 4. When pass a pole at $Ae^{j\omega_n}$, $A \approx 1$, gain peak at ω_n .

5. On unit circle
$$z = e^{j\omega}$$
: $z = 1 \rightarrow DC$; $z = j \rightarrow \omega = \frac{\pi}{2}$; $z = -1 \rightarrow \omega = \pi$.

EX: Zeros: $\{e^{\pm j\pi/4}, e^{\pm j\pi/2}, e^{j\pi}\}$. Poles: $\{0.8e^{\pm j\pi/3}, 0.8e^{\pm j2\pi/3}\}$. Gain:

- 1. Note gain dips to zero at $\omega = \pm \frac{\pi}{4} = \pm 0.785$ and $\omega = \pm \frac{\pi}{2} = \pm 1.57$.
- 2. Note peaks at $\omega = \pm \frac{\pi}{3} = \pm 1.05$ and $\omega = \pm \frac{2\pi}{3} = \pm 2.10$
- 3. The closer a zero or pole is to unit circle, the sharper the peak or dip.
- 4. The closer pole is to unit circle, the longer h[n] takes to decay to zero.
- 5. Need all poles inside the unit circle for the system to be BIBO stable.

SIMPLE EXAMPLE OF A DSP SYSTEM

Given:	Continuous-time signal $\tilde{x}(t) = \sin(250\pi t) + \sin(400\pi t)$ (125 & 200 Hz).
Goal:	Use DSP to keep the 125 Hz tone and filter out the 200 Hz tone.
Sample:	Nyquist rate= $2(200 \text{ Hz})=400 \text{ Hz}$. Oversample at 1000 Hz.
	1000 samples/second \Leftrightarrow sample every 0.001 second $\Leftrightarrow t = 0.001n$.
	$t = 0.001n \rightarrow x(n) = \tilde{x}(0.001n) = \sin(0.25\pi n) + \sin(0.4\pi n)$ (see below)
Inter-	Since output is sum of sinusoids, can interpolate using sinusoids:
polate:	$t = 0.001n \rightarrow n = 1000t$. Substitute $n = 1000t$ to perform D/A.
Note:	In general, we must use the interpolation formula
	$\tilde{y}(t) = \sum_{-\infty}^{\infty} y(n) \frac{2B}{S} \frac{\sin B(t-nT)}{B(t-nT)} = \left[\sum y(n)\delta(t-nT)\right] * \left(\frac{\sin(Bt)}{\pi t}T\right).$
where:	$T = 0.001, B = 2\pi 200, S = \frac{2\pi}{T} = 2000\pi \text{ (see Sampling handout)}.$
System:	$\tilde{x}(t) \rightarrow \overline{ \text{LPF}: 500\text{Hz} } \rightarrow \overline{ \text{A}/\text{D} } \rightarrow \overline{ h(n) } \rightarrow \overline{ \text{D}/\text{A} } \rightarrow \tilde{y}(t)$
	antialias filter sampler filter $\frac{inter}{polate}$
$h(\overline{n})$:	Want to keep $\omega = 0.25\pi$ and eliminate $\omega = 0.4\pi$.
Zeros:	Eliminate $\omega = 0.4\pi \rightarrow Zeros : z = e^{j\omega} = e^{\pm j0.4\pi}$.
Poles:	Almost cancel zeros $\rightarrow Poles : z = 0.9e^{\pm j0.4\pi}$.
Why?	Need poles inside the unit circle for stable and causal $h(n)$.
H(z):	Transfer function: $\frac{(z-e^{j0.4\pi})(z-e^{-j0.4\pi})}{(z-0.9e^{j0.4\pi})(z-0.9e^{-j0.4\pi})} = \frac{z^2-2z\cos(0.4\pi)+1}{z^2-2z0.9\cos(0.4\pi)+0.81}.$
Difference	$\frac{Y(z)}{X(z)} = H(z) = \frac{z^2 - 0.62z + 1}{z^2 - 0.56z \pm 0.81} [\cos(0.4\pi) = 0.31].$ Cross-multiply \rightarrow
Equation:	y(n+2) - 0.56y(n+1) + 0.81y(n) = x(n+2) - 0.62x(n+1) + x(n)
	$\bigcirc \text{input } x(n) \qquad \qquad \bigcirc \text{pole-zero plot} \qquad \qquad$
2	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & $

