EEC	CS 451 LECTURE NOTES	
BASIC SYSTEM PROPERTIES		
What:	Input $x[n] \to \overline{ \text{SYSTEM} } \to y[n]$ output.	
Why:	Design the system to filter input $x[n]$.	
	A system is LINEAR if these two properties hold:	
1.	Scaling: If $x[n] \to \overline{ SYS } \to y[n]$, then $ax[n] \to \overline{ SYS } \to ay[n]$	
for:	any constant a . NOT true if a varies with time (i.e., $a[n]$).	
2.	Superposition: If $x_1[n] \to \overline{ SYS } \to y_1[n]$ and $x_2[n] \to \overline{ SYS } \to y_2[n]$,	
Then:	$(ax_1[n] + bx_2[n]) \rightarrow \overline{ SYS } \rightarrow (ay_1[n] + by_2[n])$	
for:	any constants a, b . NOT true if a or b vary with time (i.e., $a[n], b[n]$).	
	$ \begin{array}{ll} y[n] = 3x[n-2]; & y[n] = x[n+1] - nx[n] + 2x[n-1]; & y[n] = \sin(n)x[n], \\ y[n] = x^2[n]; & y[n] = \sin(x[n]); & y[n] = x[n] ; & y[n] = x[n]/x[n-1]. \end{array} $	
	y[n] = x[n] + 1 (try it). This is called an affine system. If any nonlinear function of $x[n]$, not linear. Nonlinear of just n OK.	
DEF:	A system is TIME-INVARIANT if this property holds:	
	If $x[n] \to \overline{ SYS } \to y[n]$, then $x[n-N] \to \overline{ SYS } \to y[n-N]$	
for:	any integer time delay N. NOT true if N varies with time (e.g., $N(n)$).	
NOT:	$y[n] = 3x[n-2]; y[n] = \sin(x[n]); y[n] = x[n]/x[n-1].$ $y[n] = nx[n]; y[n] = x[n^2]; y[n] = x[2n]; y[n] = x[-n].$ If n appears anywhere other than in $x[n]$, not time-invariant. Else OK.	
	A system is CAUSAL if it has this form for some function $F(\cdot)$: y[n] = F(x[n], x[n-1], x[n-2]) (present and past input only). Physical systems must be causal. But DSP filters need not be causal!	
DEF:	A system is MEMORYLESS if $y[n] = F(x[n])$ (present input only).	
DEF:	A system is (BIBO) STABLE iff: Let $x[n] \to \overline{ \text{SYSTEM} } \to y[n]$.	
	If $ x[n] < M$ for some constant M , then $ y[n] < N$ for some N . "Every bounded input (BI) produces a bounded output (BO)."	
HOW:	BIBO stable $\Leftrightarrow \sum_{n=-\infty}^{\infty} h[n] < L$ for some constant L	
	Impulse $\delta[n] \to \overline{ SYS } \to h[n]$ =impulse response.	
	A time-invariant system is observed to have these two responses: $\{\underline{0}, 0, 3\} \rightarrow \overline{ SYS } \rightarrow \{\underline{0}, 1, 0, 2\}$ and $\{\underline{0}, 0, 0, 1\} \rightarrow \overline{ SYS } \rightarrow \{1, \underline{2}, 1\}$. The system is nonlinear.	
	By contradiction. Suppose the system is linear. But then:	
1 1001	$\{\underline{0}, 0, 0, 1\} \rightarrow \overline{ SYS } \rightarrow \{1, \underline{2}, 1\}$ implies $\{\underline{0}, 0, 3\} \rightarrow \overline{ SYS } \rightarrow \{3, 6, \underline{3}\}$ since we know it is time-invariant. Then $\{\underline{0}, 0, 3\}$ produces two outputs!	

E	CS 451 LECTURE NOTES	
CONVOLUTION AND IMPULSE RESPONSE		
Note	$\begin{aligned} x[n] &= \{3, \underline{1}, 4, 6\} \Leftrightarrow x[n] = 3\delta[n+1] + 1\delta[n] + 4\delta[n-1] + 6\delta[n-2]. \\ x[n] &= \sum_{i} x[i]\delta[n-i] = x[n] * \delta[n] \text{ (sifting property of impulse).} \end{aligned}$	
-	x[n-D] is $x[n]$ shifted right (later) if $D > 0$; left (earlier) if $D < 0$. x[-n] is $x[n]$ flipped/folded/reversed around $n = 0$.	
	x[N-n] is $x[-n]$ shifted right if $N > 0$ (since $x[0]$ is now at $n = N$).	
	FOR LINEAR TIME-INVARIANT (LTI) SYSTEMS:	
	$\delta[n] \to \overline{ LTI } \to h[n]$ Definition of Impulse response $h[n]$.	
	$\delta[n-i] \to \overline{ LTI } \to h[n-i]$ Time invariant: delay by <i>i</i> .	
•	$x[i]\delta[n-i] \longrightarrow \overline{ LTI } \longrightarrow x[i]h[n-i]$ Linear: scale by $x[i]$.	
2	$\sum_{i} x[i]\delta[n-i] \to \overline{ LTI } \to \sum_{i} x[i]h[n-i]$ Linear: superposition.	
ļ	$x[n] \rightarrow \overline{ LTI } \rightarrow y[n] = \sum_{i} x[i]h[n-i] = h[n] * x[n]$ Convolution.	
	Input $x[n]$ into LTI system with no initial stored energy \rightarrow output $y[n]$. PROPERTIES OF DISCRETE CONVOLUTION	
	$y[n] = h[n] * x[n] = x[n] * h[n] = \sum_{i} h[i]x[n-i] = \sum_{i} h[n-i]x[i].$ h[n], x[n] both causal $(h[n] = 0$ for $n < 0$ and $x[n] = 0$ for $n < 0$)	
	$ = y[n] = \sum_{i=0}^{n} h[i]x[n-i] = \sum_{i=0}^{n} h[n-i]x[i] \text{ also causal.} $	
	Suppose $h[n] \neq 0$ only for $0 \le n \le L$ $(h[n]$ has length $L + 1)$.	
	Suppose $x[n] \neq 0$ only for $0 \le n \le M$ ($x[n]$ has length $M + 1$). Then $x[n] \neq 0$ only for $0 \le n \le L + M$ ($x[n]$ has length $M + 1$).	
Note	Then $y[n] \neq 0$ only for $0 \le n \le L + M$ $(y[n]$ has length $L + M + 1$). Length $[y[n]]$ =Length $[h[n]]$ +Length $[x[n]]$ -1.	
	$y[0] = h[0]x[0]; y[L+M] = h[L]x[M]; x[n] * \delta[n-D] = x[n-D].$	
	$x[n] \rightarrow \overline{ h_1[n] } \rightarrow \overline{ h_2[n] } \rightarrow y[n] \text{ (cascade connection)}$	
	Equivalent to: $x[n] \to \overline{[h_1[n] * h_2[n]]} \to y[n].$	
1	$x[n] \to \langle \stackrel{\rightarrow}{\underset{\rightarrow}{\longrightarrow}} \stackrel{ h_1[n] }{ h_2[n] } \stackrel{\rightarrow}{} \bigoplus \to y[n] \text{ (parallel connection)}$	
	Equivalent to: $x[n] \to \overline{[h_1[n] + h_2[n]]} \to y[n].$	
MA	$y[n] = b_0 x[n] + b_1 x[n-1] + \ldots + b_q x[n-q] $ (Moving Average)	
	Present output=weighted average of q most recent inputs.	
	Equivalent to $y[n] = b[n] * x[n]$ where $b[k] = b_k, 0 \le k \le q$.	
FIR	Finite Impulse Response $\Leftrightarrow h[n]$ has finite duration.	
	Any MA system is also an FIR system, and vice-versa. Infinite Impulse Response $\Leftrightarrow h[n]$ not finite duration.	
	$h[n] = a^n u[n] = a^n$ for $n \ge 0$ and $ a < 1$ is stable and IIR.	

LECTURE NOTES

RECURSIVE COMPUTATION OF IMPULSE RESPONSE

Goal: Compute impulse response h[n] of system $y[n] - \frac{1}{2}y[n-1] = 3x[n]$. **Sol'n:** Compute recursively $h[n] - \frac{1}{2}h[n-1] = 3\delta[n] = 0$ if n > 0. **n=0:** $h[0] - \frac{1}{2}h[-1] = 3\delta[0] \rightarrow h[0] - \frac{1}{2}(0) = 3(1) \rightarrow h[0] = 3.$ **n=1:** $h[1] - \frac{1}{2}h[0] = 3\delta[1] \rightarrow h[1] - \frac{1}{2}(3) = 3(0) \rightarrow h[0] = \frac{3}{2}$. **n=2:** $h[2] - \frac{1}{2}h[1] = 3\delta[2] \rightarrow h[2] - \frac{1}{2}(\frac{3}{2}) = 3(0) \rightarrow h[0] = \frac{3}{4}$. **n=3:** $h[3] - \frac{1}{2}h[2] = 3\delta[3] \rightarrow h[3] - \frac{1}{2}(\frac{3}{4}) = 3(0) \rightarrow h[0] = \frac{3}{8}$. $h[n] = 3(\frac{1}{2})^n u[n] = 3(\frac{1}{2})^n$ for $n \ge 0$. Geometric signal. BIBO (BOUNDED INPUT→BOUNDED OUTPUT) STABILITY **Goal:** Determine whether an LTI system is BIBO stable from its h[n]. **EX #1:** $h[n] = \{2, 3, -4\} \rightarrow \sum |h[n]| = |2| + |3| + |-4| = 9 < \infty \rightarrow \frac{\text{BIBO}}{\text{stable}}.$ **EX #2:** $h[n] = (-\frac{1}{2})^n u[n] \to \sum |h[n]| = \sum |-\frac{1}{2}|^n = \frac{1}{1-0.5} < \infty \to \frac{\text{BIBO}}{\text{stable}}$ **EX #3:** $h[n] = \frac{(-1)^n}{n+1} u[n] \to \sum |h[n]| = \sum \frac{1}{n+1} u[n] \to \infty \to \text{NOT BIBO stable.}$ **Note:** $\sum \frac{(-1)^n}{n+1} u[n] = \log 2$ but $\sum |\frac{(-1)^n}{n+1}| u[n] = \sum \frac{1}{n+1} u[n] \to \infty$ so absolute summability vs. summability matters for BIBO stability! CONVOLUTION OF TWO FINITE SIGNALS **Goal:** Compute $\{\underline{1}, 2, 3\} * \{\underline{4}, 5, 6, 7\} = \{4, 13, 28, 34, 32, 21\}.$ y[0] = h[0]x[0] = (1)(4) = 04.y[1] = h[1]x[0] + h[0]x[1] = (2)(4) + (1)(5) = 13.y[2] = h[2]x[0] + h[1]x[1] + h[0]x[2] = (3)(4) + (2)(5) + (1)(6) = 28.y[3] = h[2]x[1] + h[1]x[2] + h[0]x[3] = (3)(5) + (2)(6) + (1)(7) = 34.y[4] = h[2]x[2] + h[1]x[3] = (3)(6) + (2)(7) = 32.y[5] = h[2]x[3] = (3)(7) = 21.Note: Length y[n]=Length h[n]+Length x[n] - 1 = 3 + 4 - 1 = 6. CONVOLUTION OF FINITE AND INFINITE SIGNALS **Goal:** Compute $\{\underline{2}, -1, 3\} * (\frac{1}{2})^n u[n] = 2\delta[n] + 3(\frac{1}{2})^{n-2}u[n-2].$ **Sol'n:** $\{\underline{2}, -1, 3\} * (\frac{1}{2})^n u[n] = (2\delta[n] - 1\delta[n-1] + 3\delta[n-2]) * (\frac{1}{2})^n u[n] =$ $2(\frac{1}{2})^n u[n] - 1(\frac{1}{2})^{n-1} u[n-1] + 3(\frac{1}{2})^{n-2} u[n-2] = 2\delta[n] + 3(\frac{1}{2})^{n-2} u[n-2].$ Note: $\{\underline{2}, -1\} * (\frac{1}{2})^n u[n] = 2\delta[n]$. So $x[n] \to \overline{|(\frac{1}{2})^n u[n]|} \to \overline{|\{2, -1\}|} \to 2x[n]$.

DIFFERENCE EQUATIONS

MA: $y(n) = b_0 x(n) + b_1 x(n-1) + \ldots + b_q x(n-q)$ (Moving Average) **Huh?** Present output=weighted average of *q* most recent inputs. **Note:** Equivalent to y(n) = b(n) * x(n) where $b(k) = b_k, 0 \le k \le q$. Why? So why bother? Because now can have *initial conditions*. **AR:** $y(n) + a_1y(n-1) + \ldots + a_py(n-p) = x(n)$ (AutoRegression) Huh? Present output=weighted sum of *p* most recent outputs. **Note:** Compute y(n) recursively from its p most recent values. **ARMA:** $\sum_{i=0}^{r} a_i y(n-i) = \sum_{i=0}^{q} b_i x(n-i)$ (Combine AR and MA \rightarrow ARMA). AUTOREGRESSIVE MOVING AVERAGE **PROPERTIES OF DIFFERENCE EQUATIONS** 1. Clearly represent LTI system. Now allow initial conditions. 2. MA model \Leftrightarrow FIR (Finite Impulse Response) filter: For MA model, h(n) has finite length q + 1. 3. AR model \Leftrightarrow IIR (Infinite Impulse Response) filter: For AR model, h(n) does not have finite length. But can implement using finite set of *coefficients* a_i . 4. Analogous to *differential equation* in continuous time: $\left(\frac{d^p}{dt^p} + a_1 \frac{d^{p-1}}{dt^{p-1}} + \dots + a_p\right) y(t) = \left(\frac{d^q}{dt^q} + b_1 \frac{d^{q-1}}{dt^{q-1}} + \dots + b_q\right) x(t).$ **Note:** Coefficients a_i and b_i are not directly analogous here. **Note:** Time-invariant in both cases since coefficients indpt of time. 5. SKIP Section 2.4.3 in text: 1-sided z-transform is *much* easier.

READ Section 2.5 in text: 1-sided 2-transform is *much* easier. READ Section 2.5 in text: signal flow graph implementations.

DIFFERENCE EQUATIONS VS. h(n)

Advantages of Difference Equations:

- 1. Analogous to *differential equation* in continuous time. Often can write them down from *model* of physical system.
- 2. Can incorporate nonzero initial conditions.
- 3. AR model may be much more efficient implementation of system.

Disadvantages of Difference Equations:

- 1. There may not be a difference equation description of system! Example: $h(n) = \frac{1}{n}, n > 0$ has no difference equation model. Recall: $h(t) = \delta(t-1)$ (delay) has no differential equation model.
- 2. May only want output y(N) for single time N (e.g., end of year). Then convolution $y(N) = \sum h(i)x(N-i)$ more efficient computation.