Def: $y(n)=h(n)$ © $u(n)=\sum_{i=0}^{N-1} h(i)(u(n-i))_{N} \Leftrightarrow Y_{k}=X_{k} U_{k}$. where: $(x(n))_{N} \Leftrightarrow \mathrm{~N}$-point periodic extension of $x(n)$. "Cyclic" ="circular." Order: "N-point" or "order $\mathrm{N} " \Leftrightarrow y(n), h(n), u(n)$ all have length N .

How to Compute Circular Convolutions:

Goal: Compute $\{1,2,3,4\}$ © $\{0,1,2,3\}$ in three different ways:
Ref: Phillips and Parr, Signals, Systems and Transforms, p.576-580.
\#1. Take only one cycle of the two cycles shown for each:

$$
\begin{aligned}
& y(0)=\left\{\begin{array}{c}
\{1,2,3,4,1,2,3,4\} \\
\{0,3,1,0,3,2,1\}
\end{array} \rightarrow(1)(0)+(2)(3)+(3)(2)+(4)(1)=16\right. \text {. } \\
& y(1)=\left\{\begin{array}{cc}
\{1,2,3,3,2,1,0,3,2\} \\
\{1,2,2,3\}
\end{array}(1)+(2)(0)+(3)(3)+(4)(2)=18\right. \text {. } \\
& y(2)=\underset{\{2,1,0,3,2,1,0,3\}}{\{1,2,4,1,2,4\}} \rightarrow(1)(2)+(2)(1)+(3)(0)+(4)(3)=16 \text {. } \\
& y(3)=\underset{\{3,2,1,0,3,2,1,0\}}{\{1,2,3,4,2,34} \rightarrow(1)(3)+(2)(2)+(3)(1)+(4)(0)=10 .
\end{aligned}
$$

\#2. Compute the linear convolution and then alias it:
Linear: $\{1,2,3,4\} *\{0,1,2,3\}=\{0,1,4,10,16,17,12\}$ (mult. z-transforms).
Alias: $\rightarrow\{0+16,1+17,4+12,10\}=\{16,18,16,10\}$ checks.
\#3. Compute 4-point DFTs, multiply, compute 4-point inverse DFT:
$H_{k}: \operatorname{DFT}\{1,2,3,4\}=\{10,-2+j 2,-2,-2-j 2\}$. Confirm this!
$U_{k}: \operatorname{DFT}\{0,1,2,3\}=\{06,-2+j 2,-2,-2-j 2\}$. Confirm this!
$H_{k} U_{k}:\{(10)(6),(-2+j 2)(-2+j 2),(-2)(-2),(-2-j 2)(-2-j 2)\}=\{60,-j 8,4, j 8\}$. $y(n): y(n)=D F T^{-1}\{60,-j 8,4, j 8\}=\{16,18,16,10\}$ checks.

Using Cyclic Convs and DFTs to Compute Linear Convs:
0-pad: $\{1,2,3,4,0,0,0\} \subset\{0,1,2,3,0,0,0\}=\{0,1,4,10,16,17,12\}$.
Note: Linear conv. of two 4 -point $\rightarrow 4+4-1=7$-point sequence.
Long Often input signal $u(n)$ is much longer than filter $h(n)$. input Chop up $u(n)$ into segments $u_{i}(n)$ and compute $h(n) * u_{i}(n)$.
$\mathbf{u}(\mathbf{n})$: Use Overlap-save or overlap-add methods (see text p.430-433).
Compute quickly by multiplying 7 -point DFTs, then inverse DFT:

Goal: Compute numerically $X(f)=\int x(t) e^{-j 2 \pi f t} d t ; x(t)=\int X(f) e^{j 2 \pi f t} d f$. Note $X(f)=X\left(\frac{\omega}{2 \pi}\right)$ and $d f=\frac{d \omega}{2 \pi}$ (note missing 2π in inverse).
Assume: $x(t)$ time-limited to $0<t<T$ (so that $x(t)=0$ for other values of t). What if $x(t)$ is time-limited to another interval $T_{i}<t<T_{f}$?
Then use $T=T_{f}-T_{i}$ and multiply $X(f)$ by $e^{-j 2 \pi f T_{i}}$ afterwards.
Assume: $X(f)$ band-limited to $-B / 2<f<B / 2(X(f)=0$ for $|f|>B / 2)$.
Why $B / 2$ instead of B ? Saves factor 2 throughout below; symmetry.
Sample $t: \quad t=n \Delta_{t}$ for $0 \leq n \leq N-1$. Nyquist sampling $\rightarrow \Delta_{t}=1 / B$.
Sample $f: f=k \Delta_{f}$ for $0 \leq k \leq N-1$. Nyquist sampling $\rightarrow \Delta_{f}=1 / T$.
Approx: $X(f) \approx \sum_{n=0}^{N-1} x\left(n \Delta_{t}\right) e^{-j 2 \pi f n \Delta_{t}} \Delta_{t}$ (using rectangle rule).
Sample $f: X\left(k \Delta_{f}\right) \approx \sum_{n=0}^{N-1} x\left(n \Delta_{t}\right) e^{-j 2 \pi n k \Delta_{t} \Delta_{f}} \Delta_{t}$.
Inverse: Repeating above, $x(n) \approx \sum_{k=0}^{N-1} X\left(k \Delta_{f}\right) e^{j 2 \pi n k \Delta_{t} \Delta_{f}} \Delta_{f}$
DFT: Let $X_{k}=X\left(k \Delta_{f}\right) / \Delta_{t}=X\left(k \Delta_{f}\right) B$ and $\Delta_{t} \Delta_{f}=1 / N$ above.
Then: $X_{k} \approx \sum_{n=0}^{N-1} x\left(n \Delta_{t}\right) e^{-j 2 \pi n k / N} ; \quad x(n) \approx \frac{1}{N} \sum_{k=0}^{N-1} X_{k} e^{j 2 \pi n k / N}$ DFT!
FFT: Use FFT of order $N=B T$ to compute DFT of order $N=B T$.
where: $\Delta_{t} \Delta_{f}=1 / N$ and $\Delta_{t}=1 / B$ and $\Delta_{f}=1 / T$ all $\rightarrow B T=N$.
Formulae: $B T=N ; \Delta_{t} \Delta_{f}=1 / N ; \Delta_{t}=1 / B ; \Delta_{f}=1 / T ; X_{k}=X\left(k \Delta_{f}\right) B$.
Remember: $X(f)=0$ for $|f|>B / 2$, not $|f|>B$!
Example: $\mathcal{F}\left\{e^{-|t|}\right\}=2 /\left(\omega^{2}+1\right)=2 /\left(4 \pi^{2} f^{2}+1\right)$. Recall $\omega=2 \pi f$.
Limits: About $-6<t<6 \rightarrow T=12$ and $-8<f<8 \rightarrow B=16$ (not 8 !).
Values: $N=B T=(16)(12)=192 ; \Delta_{t}=1 / B=1 / 16 ; \Delta_{f}=1 / T=1 / 12$.
FFT: 192-point FFT of $x(t)$ sampled $1 / 16$ to get $16 X(f)$ sampled $1 / 12$.

