EECS 451 DISCRETE FOURIER TRANSFORM (DFT)

DFT: $X_{k}=\sum_{n=0}^{N-1} x(n) e^{-j 2 \pi n k / N} ; x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X_{k} e^{j 2 \pi n k / N} ;$ length $\leq N$.
DTFT: $X_{k}=\left.X(z)\right|_{z=e^{j 2 \pi k / N}}=\left.X\left(e^{j \omega}\right)\right|_{\omega=2 \pi k / N}$ sampled on unit circle.
DTFS: $\mathcal{F}\{$ periodic extension of $\{x(n)\}\}=$ periodic extension of $\left\{X_{k}\right\}$.
except: factor of $1 / N$ moved. Note: $k=0,1 \ldots N-1$ and $n=0,1 \ldots N-1$.
Text: Uses $X(k)$ not X_{k}. I hate that-too easy to confuse with $X(z)$!
What: Use DFT to compute DTFT at $\omega=\frac{2 \pi k}{N}$: equispaced samples on u.c. Why: Use for spectral analysis, and to recover $x(n)$ from DTFT. BUT:
Finite $x(n)$ has finite length $L \rightarrow$ using $N \geq L \rightarrow \operatorname{recover} x(n)$ from X_{k}. length: But $N<L \rightarrow$ can only recover $\sum_{k} x(n+k N) \rightarrow \operatorname{aliased} x(n)$.

EX: $x(n)=\{1,2,3,4,5\} \rightarrow X\left(e^{j \omega}\right)=1+2 e^{-j \omega}+3 e^{-2 j \omega}+4 e^{-j 3 \omega}+5 e^{-j 4 \omega}$ Sample DTFT on unit circle at $\omega=0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}$ to get DFT:
DFT: $X_{0}=1+2+3+4+5=15 ; X_{1}=1-2 j-3+4 j+5=3+2 j$;
$\mathbf{N}=4: \quad X_{2}=1-2+3-4+5=03 ; X_{3}=1+2 j-3-4 j+5=3-2 j=X_{1}^{*}$.
IDFT: $x(0)=\frac{1}{4}[15+(3+2 j)+3+(3-2 j)]=6$ incorrect $(6=1+5$ aliased).
$x(1)=\frac{1}{4}[15(1)+(3+2 j)(j)+3(-1)+(3-2 j)(-j)]=2$ correct.
$x(2)=\frac{1}{4}[15(1)+(3+2 j)(-1)+3(1)+(3-2 j)(-1)]=3$ correct.
$x(3)=\frac{1}{4}[15(1)+(3+2 j)(-j)+3(-1)+(3-2 j)(j)]=4$ correct.
Why? Undersampled $X\left(e^{j \omega}\right)$ on unit circle \rightarrow aliasing (just like before).
Inter- Let $x(n)$ have length $L \leq N$. We're given $X\left(e^{j 2 \pi k / N}\right), k=0,1 \ldots N-1$. polate Then interpolate $X\left(e^{j \omega}\right)=\sum_{k=0}^{N-1} X\left(e^{j 2 \pi k / N}\right) S\left(\omega-\frac{2 \pi k}{N}\right)$
DTFT: $S(\omega)=\frac{\sin (\omega N / 2)}{N \sin (\omega / 2)} e^{-j \omega(N-1) / 2}=\operatorname{DTFT}\left\{\frac{1}{N} \sum_{i=0}^{N-1} \delta(n-i)\right\}$.
Zero: $N>L \rightarrow \operatorname{DFT}\{x(0) \ldots x(L-1), 0 \ldots 0($ zero - pad $)\} \rightarrow$ above.
padding This smoothes DTFT (finer sampling in ω), BUT: no additional info.
EX: $D F T_{N}\left\{\sum_{i=0}^{L-1} \delta(n-i)\right\}=\frac{\sin (\pi k L / N)}{\sin (\pi k / N)} e^{-j \pi k(L-1) / N}$. Window blurs.
Cyclic $y(n)=h(n)$ © $x(n)=\sum_{i=0}^{N-1} h(i) x((n-i))_{N} \Leftrightarrow Y_{k}=H_{k} X_{k}$.
convol: $(x(n))_{N} \Leftrightarrow \mathrm{~N}-$ point periodic extension of $x(n)$. "Cyclic" $=$ "circular."
Ex: $\{1,2,3\}\{4,5,6\}$: Take one complete cycle of each:
$y(0)=\substack{1,2,6,5,1,2,6,5 \\ 4,6,4,5,5} 1 \cdot 4+2 \cdot 6+3 \cdot 5=31$.

$y(2)=\underset{6,5,4,6,5,4}{1,2,3,1,2,3}=1 \cdot 6+2 \cdot 5+3 \cdot 4=28$.
Check: $H_{0} X_{0}=(1+2+3)(4+5+6)=90=(31+31+28)=Y_{0}$ checks.

Goal: Compute DFT $X_{k}=\sum_{n=0}^{N-1} x(n) W_{N}^{n k}$ where $W_{N}=e^{-j 2 \pi / N}$.
Names: FFT is an algorithm for computing the DFT, which is a transform.
Why? Direct computation requires N^{2} mults and $N(N-1)$ adds: too many!
Cooley- 1965 at IBM. Serious DSP dates from this algorithm.
Tukey: Divide up large DFT into smaller DFTs: $N=N_{1} N_{2}$.
coarse: $n=n_{1}+N_{1} n_{2}$ where $n_{1}=0 \ldots N_{1}-1$ and $n_{2}=0 \ldots N_{2}-1$.
vernier: $k=k_{2}+N_{2} k_{1}$ where $k_{1}=0 \ldots N_{1}-1$ and $k_{2}=0 \ldots N_{2}-1$.
indices $n k=\left(n_{1}+N_{1} n_{2}\right)\left(k_{2}+N_{2} k_{1}\right)=n_{1} k_{2}+N_{1} n_{2} k_{2}+N_{2} n_{1} k_{1}+N_{1} N_{2} n_{2} k_{1}$. exponent: $W_{N}^{n k}=W_{N}^{n_{1} k_{2}} W_{N_{2}}^{n_{2} k_{2}} W_{N_{1}}^{n_{1} k_{1}}$ using $W_{N_{1} N_{2}}^{N_{1}}=W_{N_{2}}$ and $W_{N}^{N_{1} N_{2}}=1$.

DFT: $X_{k}=X_{k_{2}+N_{2} k_{1}}=\sum_{n_{1}=0}^{N_{1}-1} \sum_{n_{2}=0}^{N_{2}-1} x\left(n_{1}+N_{1} n_{2}\right) W_{N}^{\left(n_{1}+N_{1} n_{2}\right)\left(k_{2}+N_{2} k_{1}\right)}$.
rewrite: $X_{k_{2}+N_{2} k_{1}}=\sum_{n_{1}=0}^{N_{1}-1} W_{N_{1}}^{n_{1} k_{1}}\left[W_{N}^{n_{1} k_{2}} \sum_{n_{2}=0}^{N_{2}-1} W_{N_{2}}^{n_{2} k_{2}} x\left(n_{1}+N_{1} n_{2}\right)\right]$.

1. Compute N_{1} (for each n_{1}) N_{2}-point DFTs of $x\left(n_{1}+N_{1} n_{2}\right)$ (in n_{2}).
2. Multiply result by twiddle factors $W_{N}^{n_{1} k_{2}}$. These are twiddle mults.
3. Compute N_{2} (for each k_{2}) N_{1}-point DFTs of the result. Now done!
4. $\left(N_{1} N_{2}\right)$-point $\rightarrow N_{1}\left(N_{2}\right.$-point $)+N_{2}\left(N_{1}\right.$-point $)+\left(N_{1}-1\right)\left(N_{2}-1\right)$ twiddle since $n_{1}=0$ or $k_{2}=0 \rightarrow W_{N}^{n_{1} k_{2}}=1$. This is important below.
Visual: $\left(N_{1} \times N_{2}\right)$ arrays: $x_{n_{1}, n_{2}}=x\left(n_{1}+N_{1} n_{2}\right) ; X_{k_{1}, k_{2}}=X\left(k_{2}+N_{2} k_{1}\right)$.
5. Take N_{2}-point DFT of each row (fixed n_{1}). Yields $\hat{x}_{n_{1}, k_{2}}$.
6. Multiply $\hat{x}_{n_{1}, k_{2}}$ point-by-point by twiddle factor $W_{N}^{n_{1} k_{2}}$.
7. Take N_{1}-point DFT of each column (fixed k_{2}). Yields $X_{k_{1}, k_{2}}$.

Radix-2 Cooley-Tukey Fast Fourier Transforms

$N=2 \frac{N}{2} \rightarrow$ Decimation-in-time FFT: $N_{1}=2 ; N_{2}=N / 2 ; \quad n_{1}=0,1 ; k_{1}=0,1$.

$$
\begin{aligned}
& X_{k_{2}}=1 \sum_{n_{2}=0}^{N / 2-1} W_{N / 2}^{n_{2} k_{2}} x\left(2 n_{2}\right)+W_{N}^{1 k_{2}} \sum_{n_{2}=0}^{N / 2-1} W_{N / 2}^{n_{2} k_{2}} x\left(2 n_{2}+1\right) . \\
& X_{k_{2}+N / 2}=1 \sum_{n_{2}=0}^{N / 2-1} W_{N / 2}^{n_{2} k_{2}} x\left(2 n_{2}\right)-W_{N}^{1 k_{2}} \sum_{n_{2}=0}^{N / 2-1} W_{N / 2}^{n_{2} k_{2}} x\left(2 n_{2}+1\right) .
\end{aligned}
$$

N-point $\rightarrow 2\left(\frac{N}{2}\right.$-point $)+\frac{N}{2}(2$-point $)+\left(\frac{N}{2}-1\right)$ twiddle mults. Total: $\frac{N}{2} \log _{2} N$ mults.
Note: $\left(N_{1}-1\right)\left(N_{2}-1\right)=(2-1)\left(\frac{N}{2}-1\right)=\frac{N}{2}-1: \frac{1}{2}$ twiddle mults trivial!
$N=\frac{N}{2} 2 \rightarrow$ Decimation-in-freq. FFT: $N_{2}=2 ; N_{1}=N / 2 ; \quad n_{2}=0,1 ; k_{2}=0,1$.
$X_{2 k_{1}}=\sum_{n_{1}=0}^{N / 2-1} W_{N / 2}^{n_{1} k_{1}}\left[x\left(n_{1}\right)+x\left(n_{1}+N / 2\right)\right] 1$.
$X_{2 k_{1}+1}=\sum_{n_{1}=0}^{N / 2-1} W_{N / 2}^{n_{1} k_{1}}\left[x\left(n_{1}\right)-x\left(n_{1}+N / 2\right)\right] W_{N}^{1 n_{1}}$.
N -point $\rightarrow \frac{N}{2}(2$-point $)+2\left(\frac{N}{2}\right.$-point $)+\left(\frac{N}{2}-1\right)$ twiddle mults. Total: $\frac{N}{2} \log _{2} N$ mults.

