EECS 451 DISCRETE FOURIER TRANSFORM (DFT)

DFT:	$X_{k} = \sum_{n=0}^{N-1} x(n) e^{-j2\pi nk/N}; x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X_{k} e^{j2\pi nk/N}; \text{ length} \leq N.$
DTFT:	$X_{k} = X(z) _{z=e^{j2\pi k/N}} = X(e^{j\omega}) _{\omega=2\pi k/N} \text{ sampled on unit circle.}$
DTFS:	$\mathcal{F}\{\text{periodic extension of } \{x(n)\}\} = \text{periodic extension of } \{X_{k}\}.$
except:	factor of $1/N$ moved. Note: $k = 0, 1 \dots N - 1$ and $n = 0, 1 \dots N - 1.$
Text:	Uses $X(k)$ not X_{k} . I hate that—too easy to confuse with $X(z)$!
What:	Use DFT to compute DTFT at $\omega = \frac{2\pi k}{N}$: equispaced samples on u.c.
Why:	Use for spectral analysis, and to recover $x(n)$ from DTFT. BUT:
Finite	$x(n)$ has finite length $L \rightarrow \text{using } N \ge L \rightarrow \text{recover } x(n)$ from X_k .
length:	But $N < L \rightarrow \text{can only recover } \sum_k x(n+kN) \rightarrow aliased x(n)$.
EX: DFT: N=4: IDFT: Why?	$\begin{split} x(n) &= \{1, 2, 3, 4, 5\} \to X(e^{j\omega}) = 1 + 2e^{-j\omega} + 3e^{-2j\omega} + 4e^{-j3\omega} + 5e^{-j4\omega} \\ \text{Sample DTFT on unit circle at } \omega &= 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2} \text{ to get DFT:} \\ X_0 &= 1 + 2 + 3 + 4 + 5 = 15; X_1 = 1 - 2j - 3 + 4j + 5 = 3 + 2j; \\ X_2 &= 1 - 2 + 3 - 4 + 5 = 03; X_3 = 1 + 2j - 3 - 4j + 5 = 3 - 2j = X_1^*. \\ x(0) &= \frac{1}{4} [15 + (3 + 2j) + 3 + (3 - 2j)] = 6 \text{ incorrect } (6 = 1 + 5 \text{ aliased}). \\ x(1) &= \frac{1}{4} [15(1) + (3 + 2j)(j) + 3(-1) + (3 - 2j)(-j)] = 2 \text{ correct.} \\ x(2) &= \frac{1}{4} [15(1) + (3 + 2j)(-1) + 3(1) + (3 - 2j)(-1)] = 3 \text{ correct.} \\ x(3) &= \frac{1}{4} [15(1) + (3 + 2j)(-j) + 3(-1) + (3 - 2j)(j)] = 4 \text{ correct.} \\ Undersampled X(e^{j\omega}) \text{ on unit circle} \rightarrow \text{aliasing (just like before).} \end{split}$
Inter-	Let $x(n)$ have length $L \leq N$. We're given $X(e^{j2\pi k/N}), k = 0, 1 \dots N-1$.
polate	Then interpolate $X(e^{j\omega}) = \sum_{k=0}^{N-1} X(e^{j2\pi k/N}) S(\omega - \frac{2\pi k}{N})$
DTFT:	$S(\omega) = \frac{\sin(\omega N/2)}{N \sin(\omega/2)} e^{-j\omega(N-1)/2} = DTFT\{\frac{1}{N} \sum_{i=0}^{N-1} \delta(n-i)\}.$
Zero:	$N > L \to DFT\{x(0) \dots x(L-1), 0 \dots 0(zero - pad)\} \to above.$
padding	This smoothes DTFT (finer sampling in ω), BUT: no additional info.
EX:	$DFT_N\{\sum_{i=0}^{L-1} \delta(n-i)\} = \frac{\sin(\pi k L/N)}{\sin(\pi k/N)}e^{-j\pi k(L-1)/N}.$ Window blurs.
Cyclic convol: Ex: Check:	$\begin{split} y(n) &= h(n) \textcircled{\odot} x(n) = \sum_{i=0}^{N-1} h(i) x((n-i))_N \Leftrightarrow Y_k = H_k X_k. \\ (x(n))_N \Leftrightarrow \text{N-point periodic extension of } x(n). \ \text{``Cyclic''=''circular.''} \\ \{1, 2, 3\} \textcircled{\odot} \{4, 5, 6\} : \text{Take one complete cycle of each:} \\ y(0) &= \frac{1, 2, 3, 1, 2, 3}{4, 6, 5, 4, 6, 5} = 1 \cdot 4 + 2 \cdot 6 + 3 \cdot 5 = 31. \\ y(1) &= \frac{1, 2, 3, 1, 2, 3}{5, 4, 6, 5, 4, 6} = 1 \cdot 5 + 2 \cdot 4 + 3 \cdot 6 = 31. \\ y(2) &= \frac{1, 2, 3, 1, 2, 3}{6, 5, 4, 6, 5, 4} = 1 \cdot 6 + 2 \cdot 5 + 3 \cdot 4 = 28. \\ H_0 X_0 &= (1 + 2 + 3)(4 + 5 + 6) = 90 = (31 + 31 + 28) = Y_0 \text{ checks.} \end{split}$

EECS 451FAST FOURIER TRANSFORM (FFT)

Goal: Compute DFT $X_k = \sum_{n=0}^{N-1} x(n) W_N^{nk}$ where $W_N = e^{-j2\pi/N}$. **Names: FFT** is an *algorithm* for computing the **DFT**, which is a *transform*. **Why?** Direct computation requires N^2 mults and N(N-1) adds: too many! Cooley- 1965 at IBM. Serious DSP dates from this algorithm. **Tukey:** Divide up large DFT into smaller DFTs: $N = N_1 N_2$. **coarse:** $n = n_1 + N_1 n_2$ where $n_1 = 0 \dots N_1 - 1$ and $n_2 = 0 \dots N_2 - 1$. **vernier:** $k = k_2 + N_2 k_1$ where $k_1 = 0 \dots N_1 - 1$ and $k_2 = 0 \dots N_2 - 1$. indices $nk = (n_1 + N_1 n_2)(k_2 + N_2 k_1) = n_1 k_2 + N_1 n_2 k_2 + N_2 n_1 k_1 + N_1 N_2 n_2 k_1.$ exponent: $W_N^{nk} = W_N^{n_1 k_2} W_{N_2}^{n_2 k_2} W_{N_1}^{n_1 k_1}$ using $W_{N_1 N_2}^{N_1} = W_{N_2}$ and $W_N^{N_1 N_2} = 1.$ **DFT:** $X_k = X_{k_2+N_2k_1} = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} x(n_1+N_1n_2) W_N^{(n_1+N_1n_2)(k_2+N_2k_1)}$ **rewrite:** $X_{k_2+N_2k_1} = \sum_{n_1=0}^{N_1-1} W_{N_1}^{n_1k_1} \left[W_N^{n_1k_2} \sum_{n_2=0}^{N_2-1} W_{N_2}^{n_2k_2} x(n_1+N_1n_2) \right].$ 1. Compute N_1 (for each n_1) N_2 -point DFTs of $x(n_1 + N_1n_2)$ (in n_2). 2. Multiply result by twiddle factors $W_N^{n_1k_2}$. These are twiddle mults. 3. Compute N_2 (for each k_2) N_1 -point DFTs of the result. Now done! 4. (N_1N_2) -point $\rightarrow N_1(N_2$ -point) $+N_2(N_1$ -point) $+(N_1-1)(N_2-1)$ twiddle since $n_1 = 0$ or $k_2 = 0 \rightarrow W_N^{n_1 k_2} = 1$. This is important below. **Visual:** $(N_1 \times N_2)$ arrays: $x_{n_1,n_2} = x(n_1 + N_1 n_2); X_{k_1,k_2} = X(k_2 + N_2 k_1).$ 1. Take N_2 -point DFT of each row (fixed n_1). Yields \hat{x}_{n_1,k_2} . 2. Multiply \hat{x}_{n_1,k_2} point-by-point by twiddle factor $W_N^{n_1k_2}$ 3. Take N_1 -point DFT of each column (fixed k_2). Yields X_{k_1,k_2} . Radix-2 Cooley-Tukey Fast Fourier Transforms $N = 2\frac{N}{2} \rightarrow Decimation-in-time \text{ FFT: } N_1 = 2; N_2 = N/2;$ $n_1 = 0, 1; k_1 = 0, 1.$ $X_{k_2} = 1 \sum_{n_2=0}^{N/2-1} W_{N/2}^{n_2k_2} x(2n_2) + W_N^{1k_2} \sum_{n_2=0}^{N/2-1} W_{N/2}^{n_2k_2} x(2n_2+1).$ $X_{k_2+N/2} = 1 \sum_{n_2=0}^{N/2-1} W_{N/2}^{n_2k_2} x(2n_2) - W_N^{1k_2} \sum_{n_2=0}^{N/2-1} W_{N/2}^{n_2k_2} x(2n_2+1).$ N-point $\rightarrow 2(\frac{N}{2}$ -point) $+ \frac{N}{2}(2$ -point) $+ (\frac{N}{2} - 1)$ twiddle mults. Total: $\frac{N}{2} \log_2 N$ mults. Note: $(N_1 - 1)(N_2 - 1) = (2 - 1)(\frac{N}{2} - 1) = \frac{N}{2} - 1 : \frac{1}{2}$ twiddle mults trivial! $N = \frac{N}{2}2 \rightarrow Decimation-in-freq. \text{ FFT: } N_2 = 2; N_1 = N/2; \quad n_2 = 0, 1; k_2 = 0, 1.$ $X_{2k_1} = \sum_{n_1=0}^{N/2-1} W_{N/2}^{n_1k_1} [x(n_1) + x(n_1 + N/2)] 1.$ $X_{2k_1+1} = \sum_{n_1=0}^{N/2-1} W_{N/2}^{n_1k_1} [x(n_1) - x(n_1 + N/2)] W_N^{1n_1}.$

N-point $\rightarrow \frac{N}{2}(2\text{-point}) + 2(\frac{N}{2}\text{-point}) + (\frac{N}{2}-1)$ twiddle mults. Total: $\frac{N}{2}\log_2 N$ mults.