DEF: $X(\omega) = \mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt; \qquad x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)e^{j\omega t}d\omega.$

Note: (1) Sign change in $e^{\pm j\widetilde{\omega}t}$; (2) Integrate over t vs. ω ; (3) Factor of $\frac{1}{2\pi}$.

Need: $\int_{-\infty}^{\infty} |x(t)| dt < \infty \Leftrightarrow x(t)$ "absolutely integrable" for $X(\omega)$ to exist.

Huh? Splits x(t) into frequency components $\sim prism$; recombine into x(t).

Also: Regard as Fourier series expansion of x(t) having period $T \to \infty$. Then $\Delta \omega = \frac{2\pi}{T} \to 0$: continuous spectrum. Units of $X(\omega)$: seconds.

Also: $\mathcal{F}\{x(t)\}=\mathcal{L}\{x(t)\}|_{s=j\omega}$ where \mathcal{L} is the **2**-sided Laplace transform.

BASIC PROPERTIES

1.
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega \to \overline{|h(t)|} \to y(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(\omega) X(\omega) e^{j\omega t} d\omega$$
.

2. Linear: $\mathcal{F}\{ax(t) + by(t)\} = a\mathcal{F}\{x(t)\} + b\mathcal{F}\{y(t)\}\$ for constants a, b.

EX: $\mathcal{F}\{\delta(t)-ae^{-at}u(t)\}=1-a\frac{1}{j\omega+a}=\frac{j\omega+a}{j\omega+a}-\frac{a}{j\omega+a}=\frac{j\omega}{j\omega+a}\approx\frac{j\omega}{a} \text{ for } \omega<< a.$ 3. Convolution: $\mathcal{F}\{\int_{-\infty}^{\infty}x(u)y(t-u)du\}=\mathcal{F}\{x(t)\}\mathcal{F}\{y(t)\}.$ EX: $e^{-t}u(t)*e^{-2t}u(t)=\mathcal{F}^{-1}\{\frac{1}{j\omega+1}\frac{1}{j\omega+2}\}=\mathcal{F}^{-1}\{\frac{1}{j\omega+1}-\frac{1}{j\omega+2}\}=[e^{-t}-e^{-2t}]u(t).$ 4. Time scaling: $\mathcal{F}\{x(at)\}=\frac{1}{|a|}X(\frac{\omega}{a}) \text{ for any constant } a. \text{ Try } \cos(\omega_o t).$

Also: Time reversal: $\mathcal{F}\{x(-t)\} = X(-\omega)$ and $\mathcal{F}\{x(t)^*\} = X(-\omega)^*$.

5. Time delay: $\mathcal{F}\{x(t-D)\}=X(\omega)e^{-j\omega D}$. Note same signs.

Also: (1) Magnitude same; (2) Linear (in ω) phase shift: "linear phase."

6. Modulation: $\mathcal{F}\{x(t)e^{jat}\}=X(\omega-a)$. Note different signs.

EX: $\mathcal{F}\{x(t)\cos(\omega_o t)\}=\frac{1}{2}X(\omega-\omega_o)+\frac{1}{2}X(\omega+\omega_o)$. Shifts spectrum. This one equation will form the basis of our study of communications.

7. **Differentiation:** $\mathcal{F}\left\{\frac{dx}{dt}\right\} = j\omega X(\omega)$. Assumes no initial condition.

Why? $\frac{dx}{dt} = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) \frac{de^{j\omega t}}{dt} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} j\omega X(\omega) e^{j\omega t} d\omega = \mathcal{F}^{-1} \{j\omega X(\omega)\}.$

Note: If x(t) includes $0.000001 \sin(10^{12}t)$ then $\frac{dx}{dt}$ includes $1000000 \cos(10^{12}t)$.

Use: Note $h(t) = \delta(t) - ae^{-at}u(t)$ has frequency response $H(\omega)$ computed above.

8. Time multiplication: $\mathcal{F}\{tx(t)\} = -\frac{dX(j\omega)}{d(j\omega)}$. $\mathcal{F}\{te^{-at}u(t)\} = [\frac{1}{j\omega+a}]^2$.

9. **DC:** (frequency=0) $X(0) = \int_{-\infty}^{\infty} x(t)dt = \text{average}; \ x(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)d\omega.$

10. **Duality:** If $\mathcal{F}\{x(t)\} = X(\omega)$, then $\mathcal{F}\{X(t)\} = 2\pi x(-\omega)$.

CONJUGATE SYMMETRY AND EVEN AND ODD FUNCTIONS

- 1. x(t) real $\to X(-\omega) = X^*(\omega)$: Called "conjugate symmetry" of $X(\omega)$.
 - a. $Re[X(\omega)] = +Re[X(-\omega)] = +\int_{-\infty}^{\infty} x(t)\cos(\omega t)dt$: even function. b. $Im[X(\omega)] = -Im[X(-\omega)] = -\int_{-\infty}^{\infty} x(t)\sin(\omega t)dt$: odd function.

 - c. $|X(\omega)| = |X(-\omega)|$: Fourier magnitude is an even function of ω .
 - d. $Arg[X(\omega)] = -Arg[X(-\omega)]$: Argument (phase) is odd function.

2. Let $x(t) = x_e(t) + x_o(t)$ where $x_e(t) = \frac{x(t) + x(-t)}{2}$ = even part of x(t). (note can always do this) and $x_o(t) = \frac{x(t) - x(-t)}{2}$ = odd part of x(t).

Then: $Re[X(\omega)] = \mathcal{F}\{x_e(t)\}\$ and $j Im[X(\omega)] = \mathcal{F}\{x_o(t)\}=$ pure imaginary.

- 3. x(t) real and even function $\Leftrightarrow X(\omega)$ real and even function.
- 4. x(t) discrete/periodic $\Leftrightarrow X(\omega)$ periodic/discrete (Fourier series).
- 5a. Parseval: $\int_{-\infty}^{\infty} x(t)y^*(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)Y^*(\omega)d\omega$; note y(t) = x(t):
- 5b. **Energy:** $\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega = \int_{-\infty}^{\infty} |X(2\pi f)|^2 df$.
- **EX:** Show energy of $e^{-at}u(t)$ is same in the time and frequency domains: $\int_{0}^{\infty} e^{-2at} dt = \frac{1}{2a} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| \frac{1}{i\omega + a} \right|^{2} d\omega = \frac{1}{2\pi} \frac{1}{a} \tan^{-1} \frac{\omega}{a} \Big|_{-\infty}^{\infty} = \frac{1}{2\pi} \frac{1}{a} 2 \frac{\pi}{2} = \frac{1}{2a}.$

EXAMPLES OF CONTINUOUS FOURIER TRANSFORMS

1. $\mathcal{F}\{\delta(t)\}=1$; $\mathcal{F}\{1\}=2\pi\delta(\omega)$ (not absolutely integrable) (duality). $\mathcal{F}\{3\delta(t) + \delta(t-1) + 4\delta(t-2)\} = 3 + e^{-j\omega} + 4e^{-j2\omega} = [1 + 7\cos(\omega) - j\sin\omega)]e^{-j\omega}.$

Note: Discrete in $t \to \text{periodic (period } 2\pi)$ in ω (DTFT).

- 2a. $\mathcal{F}\{\cos(\omega_o t)\} = \frac{1}{2}\mathcal{F}\{e^{j\omega_o t}\} + \frac{1}{2}\mathcal{F}\{e^{-j\omega_o t}\} = \pi\delta(\omega + \omega_o) + \pi\delta(\omega \omega_o).$ 2b. $\mathcal{F}\{\sin(\omega_o t)\} = \frac{1}{2j}\mathcal{F}\{e^{j\omega_o t}\} \frac{1}{2j}\mathcal{F}\{e^{-j\omega_o t}\} = j\pi\delta(\omega + \omega_o) j\pi\delta(\omega \omega_o).$

Note: Periodic in $t \to \text{discrete}$ in ω (Fourier series–line spectrum).

- 3. $\mathcal{F}\{e^{-at}1(t)\}=\frac{1}{j\omega+a}$ for constant a>0. Here 1(t)=1, t>0; 0, t<0.
- 4. $\mathcal{F}\lbrace e^{-a|t|}\rbrace = \frac{1}{a+j\omega} + \frac{1}{a-j\omega} = \frac{2a}{\omega^2+a^2}$ for constant a>0 (reverse time).

Note: $\mathcal{F}\{\text{real and even function}\}=\text{real and even function}.$

 $\overline{5. \mathcal{F}\left\{\left\{\begin{array}{ll}
1 & \text{for } |t| < t_o; \\
0 & \text{for } |t| > t_o
\end{array}\right\}} = 2t_o \frac{\sin(t_o \omega)}{t_o \omega}; \mathcal{F}^{-1}\left\{\left\{\begin{array}{ll}
1 & \text{for } |\omega| < \omega_o; \\
0 & \text{for } |\omega| > \omega_o
\end{array}\right\} = \frac{\sin(\omega_o t)}{\pi t}.$

Note: In Matlab's SP toolbox, $sinc(x) = \frac{\sin(\pi x)}{\pi x}$ for $x \neq 0$ and 1 for x = 0.

So: $h(t) = \frac{\sin(\omega_o t)}{\pi t} = \frac{\omega_o}{\pi} \operatorname{sinc}(\frac{\omega_o t}{\pi})$ and $H(\omega) = 2t_o \frac{\sin(t_o \omega)}{t_o \omega} = 2t_o \operatorname{sinc}(\frac{t_o \omega}{\pi})$. sinc?

But: Let $f_o = \frac{\omega_o}{2\pi} = \operatorname{cutoff}$ frequency in Hertz. Then $h(t) = (2f_o) \operatorname{sinc}(2f_o t)$.

And: Let $f = \frac{\overline{\omega}}{2\pi}$ =Fourier frequency in Hertz. Then $H(f) = (2t_o)\operatorname{sinc}(2t_o f)$.

Note: Impulse response h(t) for "brick-wall" low-pass filter is sinc function.

- 6. $\mathcal{F}^{-1}\left\{\begin{cases} 1, & \text{B-a} < |\omega| < \text{B+a} \\ 0, & \text{otherwise} \end{cases}\right\} = \frac{\sin(at)}{\pi t} 2\cos(Bt)$. Noncausal h(t). for constants 0 < a < B (brick-wall band-pass filter) (modulation).
- 7. $\mathcal{F}\{1(t)\} = \mathcal{F}\{\frac{1}{2}(1 + \text{SGN(t)})\} = \frac{1}{j\omega} + \pi\delta(\omega)$. NOT: $\mathcal{F}\{e^{-0t}u(t)\} = \frac{1}{j\omega+0}$!

Note: 1(t) not absolutely integrable $\to \mathcal{F}\{x(t)\} \neq \mathcal{L}\{x(t)\}|_{s=i\omega}$.

- 8. $\mathcal{F}\lbrace e^{-t^2/2}\rbrace = \sqrt{2\pi}e^{-\omega^2/2} \ (\mathcal{F}\lbrace \text{Gaussian}\rbrace = \text{Gaussian})$
- 9. $\mathcal{F}\{e^{jt^2/2}\} = \sqrt{2\pi}e^{j\pi/4}e^{-j\omega^2/2}$ (chirp signal)(compare to #8).