# Recitation 1 -EECS 451, Winter 2010 

Jan 13, 2010

## OUTLINE

- Review of Fourier Transform
- Practice problems


## Concepts

1. Fourier Transforms

- Definition
- Basic Properties
- Conjugate symmetry


## Problems

1. Determine the Fourier transform of the signal $x(t)=\frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2}$.
(a) Do you observe anything peculiar about the Fourier transform of this signal?
(b) Which other signal exhibits a similar property?
2. Compute the Fourier transform of each of the following signals
(a) $x(t)=e^{-|t|} \cos 2 t$
(b) The signal $x(t)$ depicted in figure 1
3. Fig 2 shows an incomplete Fourier transform of a sinusoidal signal $x(t)$. Determine the signal $x(t)$ using the information given below.
(a) $x(t)$ is a real signal comprising of two nonzero frequencies.
(b) The value of the signal at time $t=0$ is 7 .
(c) The energy of the signal is $(1+54 \pi) /(2 \pi)$


Figure 1:


Figure 2:

$$
\text { 1. } \begin{aligned}
x(\omega)= & \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2}}{2}} e^{-j \omega t} d t \\
= & \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}(t+j \omega)^{2}} e^{-\frac{1}{2} \omega^{2}} d t \\
& \left(\text { Let } t^{\prime}=t+j \omega\right) \\
= & e^{-\frac{1}{2} \omega^{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{\prime 2}}{2}} d t^{\prime}
\end{aligned}
$$

Since $\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} t^{\prime 2}}$ is a pdf of a Gaussian R.V.,

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2}}{2}} d t^{\prime} & =1 . \\
\therefore x(\omega) & =e^{-\frac{1}{2} \omega^{2}} .
\end{aligned}
$$

We can also prove $\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2}}{2}} d t=1$ as follows.
Since $\frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2}}{2}}$ is non-negative for all $t$, it suffices to show that

$$
\begin{aligned}
& {\left[\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2}}{2}} d t\right]\left[\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{u^{2}}{2}} d u\right]=1 .} \\
& {\left[\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2}}{2}} d t\right]\left[\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{u^{2}}{2}} d u\right]} \\
& =\int_{-\infty}^{\infty} \infty-\infty \frac{1}{2 \pi} e^{-\frac{t^{2}+u^{2}}{2}} d t d u .
\end{aligned}
$$

(Let $t=r \cos \theta, u=r \sin \theta$, i.e. charge the corticate)

$$
\begin{aligned}
& =\int_{0}^{2 \pi} \int_{0}^{\infty} \frac{1}{2 \pi} r e^{-\frac{r^{2}}{2}} d r d \theta \\
& =\int_{0}^{2 \pi} \frac{1}{2 \pi}\left[-e^{-\frac{r^{2}}{2}}\right]_{0}^{\infty} d \theta \\
& =\int_{0}^{2 \pi} \frac{1}{2 \pi} d \theta=1
\end{aligned}
$$

(a) The original signal and the transform of it have the same form. In other words, $x(t)$ is an eigen function of FT.
(b) Eigen functions of FT are called 'Hermite functions'. One of them is $t e^{-\frac{t^{2}}{2}}$.
2. (a)

$$
\begin{aligned}
x(t) & =e^{-|t|} \cos 2 t \\
& =e^{-|t|} \frac{e^{j 2 t}+e^{-j 2 t}}{2}
\end{aligned}
$$

Let $Y(w)$ be the FT of $e^{-|t|}$.
Then. $\quad X(\omega)=\frac{1}{2}(Y(\omega-2)+Y(\omega+2)) \quad(\because$ modulation property $)$

$$
\begin{aligned}
Y(\omega) & =\int_{-\infty}^{\infty} e^{-1 t 1} e^{-j \omega t} d t \\
& =\int_{0}^{\omega} e^{-t} e^{-j \omega t} d t+\int_{-\infty}^{0} e^{t} e^{-j \omega t} d t \\
& =\frac{1}{1+j \omega}+\frac{1}{1-j \omega}=\frac{2}{1+\omega^{2}} \\
\therefore \quad X(\omega) & =\frac{1}{1+(\omega-2)^{2}}+\frac{1}{1+(\omega+2)^{2}}
\end{aligned}
$$

(b) Let $x_{1}(t)=\sum_{k=-\infty}^{\infty} \delta(t-3 k)$.

Then, $\quad x(t)=x_{1}(t-1)-x_{1}(t-2)$
Hence, $\quad x(\omega)=e^{-j \omega} x_{1}(\omega)-e^{-j 2 \omega} x_{1}(\omega)$

$$
=\left(e^{-j \omega}-e^{-j 2 \omega}\right) x_{1}(\omega)
$$

Consider now the Farrier series representation of $x_{1}(t)$.
Then. $x_{1}(t)=\frac{1}{3} \sum_{k=-\infty}^{\infty} e^{j \frac{2 \pi}{3} k t}$.


$$
\begin{aligned}
& x_{1}(\omega)=\frac{2 \pi}{3} \sum_{k=+\infty}^{\infty} \delta\left(\omega-\frac{2 \pi}{3} k\right) . \\
& \therefore \quad x(\omega)=\frac{2 \pi}{3}\left(e^{-i \omega}-e^{-i 2 \omega}\right) \sum_{k=-\infty}^{\infty} \delta\left(\omega-\frac{2 \pi}{3} k\right) .
\end{aligned}
$$

Please change (c) to 'The energy of the signal is $\frac{1+54 \pi}{2 \pi}$ '.
3. Since $x(t)$ has two nonzero frequencies. we know that there is no other frequency components than $0, \pm 1, \pm 3$.

Since $x(t)$ is real, $x(-\omega)=x^{*}(\omega)$ by conjugate symmetry.
Therefore, $\quad x(-3)=j a, \quad x(1)=2 \pi$.
From (b), $\quad x(0)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x(w) d w=7$.

$$
\begin{gathered}
\frac{1}{2 \pi} \int_{-b}^{b} X(w) d w=\frac{1}{2 \pi}(4 \pi+b) \\
\therefore \quad b=10 \pi
\end{gathered}
$$

Fourier series coefficient of $x(t)$.
From (c), $\frac{1}{T_{0}} \int_{T_{0}}|x(t)|^{2} d t \stackrel{(i)}{=} \sum_{k}\left|a_{k}\right|^{2}=\frac{1+54 \pi}{2 \pi}=\frac{1}{2 \pi}+2 \eta$
where (i) is from Parseval's theorem for periodic signal,
and $T_{0}$ is the period of $x(t)$. Note that $x(t)$ is a periodic function. We can see that from the fact that the FT of $x(t)$ is discrete.

Note that $\quad X(\omega)=j a \delta(t+2)+2 \pi \delta(t+1)+10 \pi f(t)+2 \pi \delta(t-1)-j a \delta(t-2)$. Then, by the definitions of $F T$ ard $F S$.
$a_{k}$ 's are $\frac{j a}{2 \pi}, 1,5,1,-\frac{j a}{2 \pi}$.
Therefore, $\quad \sum_{k}\left|a_{k}\right|^{2}=\frac{a^{2}}{2 \pi^{2}}+2 \eta=\frac{1}{2 \pi}+2 \eta$.

$$
\therefore \quad a= \pm \sqrt{\pi} .
$$

Then, $x(t)=5+2 \cos t \pm \frac{1}{\sqrt{\pi}} \sin 2 t$.

We can prove that

$$
\begin{aligned}
& \frac{1}{T_{0}} \int_{T_{0}}|x(t)|^{2} d t=\sum_{k}\left|a_{k}\right|^{2} \quad \text { as follows. } \\
& x(t)=\sum_{k} a_{k} e^{j \frac{2 \pi}{T_{0}} k t} \text {, where } a_{R}=\frac{1}{T_{0}} \int_{T_{0}} x(t) e^{-j \frac{2 \pi}{T_{0}} k+d t .}
\end{aligned}
$$

There fore, $\frac{1}{T_{0}} \int_{T_{0}} x^{*}(t) e^{-j \frac{2 \pi}{T_{0}} h t} d t$

$$
=a_{-k}^{*},
$$

and hence. $\quad x^{*}(t)=\sum_{k} a_{-k}^{*} e^{j \frac{2 \pi}{t_{0}} k t}$.
Let $\quad x(t) x^{*}(t)=\sum_{k} c_{k} e^{j \frac{2 \pi}{\tau_{0}} k t}$
Then, $C_{k}=\frac{1}{T_{0}} \int_{T_{0}} x(t) x^{*}(t) e^{-j \frac{\pi r}{T_{0}} R t} d t$

$$
\begin{aligned}
& =\frac{1}{T_{0}} \int_{T_{0}}\left[\sum_{l} a_{l} e^{j \frac{T_{1}}{T_{0}} l}\right]\left[\sum_{m} a_{-m}^{*} e^{j \frac{2 \pi}{T_{0}} m t}\right] e^{-j \frac{2 \pi}{T_{0}} h t} d t \\
& =\frac{1}{T_{0}} \int_{T_{0}} \sum_{l} \sum_{m} a_{l} a_{-m}^{*} e^{j \frac{2 \pi}{T_{0}} t(l+m-k)} d t \\
& =\sum_{l} \sum_{m} a_{l} a_{-m}^{*} \int_{T_{0}} \frac{1}{T_{0}} e^{j \frac{j \pi}{T_{0}} t(l+m-h)} d t
\end{aligned}
$$

(Since $\frac{1}{T_{0}} \int_{T_{0}} e^{j \frac{2 \pi}{T_{0}} h t} d t=\left\{\begin{array}{ll}1, & k=0 \\ 0, & \text { otherwise }\end{array}\right)$.

$$
=\sum_{l} a_{l} a_{l-k}^{*}
$$

Then, $\frac{1}{T_{0}} \int_{T_{0}}|x(t)|^{2} d t$

$$
\begin{aligned}
& =\frac{1}{T_{0}} \int_{T_{0}} x(t) x^{*}(t) d t \\
& =\frac{1}{T_{0}} \int_{T_{0}} \sum_{k} c_{k} e^{j \frac{2 \pi}{T_{0}} R t} d t \\
& =c_{0} \\
& =\sum_{l} a_{l} a_{l}^{*}=\sum_{l}\left|a_{l}\right|^{2}
\end{aligned}
$$

We can prove the similar thing for nom periodic signal as follows.

$$
\begin{aligned}
& \int_{-\infty}^{\infty}|x(t)|^{2} d t \\
= & \int_{-\infty}^{\infty} x(t) x^{*}(t) d t \\
= & \int_{-\infty}^{\infty} x(t)\left[\frac{1}{2 \pi} \frac{1}{2 \pi} \int_{-\infty}^{*} x^{*}(\omega) e^{-j \omega t}\right] d \omega d t \quad\left(\because x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x(\omega) e^{j \omega t} d \omega\right)
\end{aligned}
$$

$=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x^{*}(\omega) \int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t d \omega \quad\left(\because \begin{array}{c}\text { change the order of } \\ \text { integration }\end{array}\right)$

$$
\begin{aligned}
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} x^{*}(\omega) x(\omega) d \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty}|x(\omega)|^{2} d \omega .
\end{aligned}
$$

