Recitation 5 - EECS 451, Winter 2010

Feb 10,2010

OUTLINE

- Review of important concepts (Lecture 7-10)
- Practice problems

Concepts: LTI systems and z-transforms

- The z-transform of the impulse response $h(n)$ is called the system function $[H(z)]$
- DT LTI systems described by LCCDE have a rational z-transform, i.e. $H(z)=\frac{A(z)}{B(z)}$
- If a signal $y(n)$ is an output of the system when the input signal is $x(n)$, then their z-transforms are related as $\mathrm{Y}(\mathrm{z})=\mathrm{H}(\mathrm{z}) \mathrm{X}(\mathrm{z})$
- Causality/Stability of the system can be determined by the ROC of $\mathrm{H}(\mathrm{z})$

Concepts: 1-sided z-transforms

1. Definition of 1 -sided z-transform

- For a given DT signal $\mathrm{x}(\mathrm{n}), X^{+}(\mathrm{z})=\sum_{n=0}^{\infty} x(n) z^{-n}$, where z is complex valued.
- For causal signals, $\mathrm{X}^{+}(\mathrm{z})$ and $\mathrm{X}(\mathrm{z})$ are the same
- ROC of $\mathrm{X}^{+}(\mathrm{z})$ is always exterior of a circle

2. Properties of 1-sided z-transform: We have $x(n) \stackrel{z^{+}}{\longleftrightarrow} X^{+}(z)$

- Almost all properties of the two-sided z-transform carry over to the one-sided z-transform
- Time delay: $x(n-k) \stackrel{z^{+}}{\longleftrightarrow} z^{-k}\left[X^{+}(z)+\sum_{l=1}^{k} x(-l) z^{l}\right]$
- Time advance: $x(n+k) \stackrel{z^{+}}{\longleftrightarrow} z^{k}\left[X^{+}(z)-\sum_{l=0}^{k-1} x(l) z^{-l}\right]$

Concepts: Discrete time Fourier transform (DTFT)

1. For a discrete aperiodic signal $x(n)$

$$
x(n)=\frac{1}{2 \pi} \int_{2 \pi} X(\omega) e^{j \omega n} d \omega, \quad X(\omega)=\sum_{n=-\infty}^{\infty} x(n) e^{-j \omega n}
$$

- DTFT is periodic with period 2π

2. Relationship of DTFT to the z-transform

- If the ROC of $X(z)$ includes the unit circle, DTFT is an evaluation of $X(z)$ on the unit circle, i.e. $X(\omega)=\left.X(z)\right|_{z=e^{\text {io }}}$

3. Properties of DTFT: Many follow from the fact $X(\omega)=X(z) \mid z=\mathrm{e}^{\mathrm{i} \omega}$

- Linearity: $a_{1} x_{1}(n)+a_{2} x_{2}(n) \leftrightarrow a_{1} X_{1}(\omega)+a_{2} X_{2}(\omega)$
- Time shifting: $\mathrm{x}(\mathrm{n}-\mathrm{k}) \leftrightarrow \mathrm{e}^{-\mathrm{j} \omega \mathrm{k}} \mathrm{X}(\omega)$
- Time Reversal: $\mathrm{x}(-\mathrm{n}) \leftrightarrow \mathrm{X}(-\omega)$
- Frequency shifting: $\mathrm{e}^{\mathrm{i} \omega 0 \mathrm{n}} \mathrm{x}(\mathrm{n}) \leftrightarrow \mathrm{X}\left(\omega-\omega_{0}\right)$
- Convolution: $\mathrm{x}_{1}(\mathrm{n}) * \mathrm{x}_{2}(\mathrm{n}) \leftrightarrow \mathrm{X}_{1}(\omega) \mathrm{X}_{2}(\omega)$
- Multiplication: $\mathrm{x}_{1}(\mathrm{n}) \mathrm{x}_{2}(\mathrm{n}) \leftrightarrow \frac{1}{2 \pi} \int_{-\pi}^{\pi} X_{1}(\omega) X_{2}(\omega-\lambda) d \lambda$
- Differentiation in the frequency domain: $\mathrm{nx}(\mathrm{n}) \leftrightarrow j \frac{d X(\omega)}{d \omega}$
- Conjugation: $\mathrm{x}^{*}(\mathrm{n}) \leftrightarrow \mathrm{X}^{*}(-\omega)$

3. Symmetry properties of DTFT: For a discrete signal $x(n)$ with Fourier transform $X(\omega)$

- If $x(n)$ is real, $X(\omega)$ is conjugate symmetric i.e. $X *(\omega)=X(-\omega)$
- If $x(n)$ is real and even, $X(\omega)$ is real and even
- If $x(n)$ is real and odd, $X(\omega)$ is imaginary and odd
- If $x(n)$ is imaginary and even, $X(\omega)$ is imaginary and even
- If $x(n)$ is imaginary and odd, $X(\omega)$ is real and odd

4. Parseval's relation

- The conservation of average power or energy in the time and frequency domains
- For a discrete time aperiodic signal, we have the total energy conserved

$$
\sum_{n=-\infty}^{\infty}|x(n)|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|X_{1}(\omega)\right|^{2} d \omega
$$

Concepts: Discrete time Fourier series (DTFS)

1. For a discrete periodic signal $x(n)$

$$
x(n)=\sum_{k=0}^{N-1} c_{k} e^{j 2 \pi \frac{k n}{N}}, \quad c_{k}=\frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-\mathrm{j} 2 \pi \frac{k n}{N}}
$$

2. Properties of DTFS

- $\mathrm{c}_{-\mathrm{k}}=\mathrm{c}_{\mathrm{N}-\mathrm{k}}$ for $\mathrm{k}>0$
- Parseval's relation

$$
\frac{1}{N} \sum_{n=-0}^{N-1}|x(n)|^{2}=\sum_{k=-0}^{N-1}\left|c_{k}\right|^{2}
$$

Problems

1. Use the one-sided z-transform to determine the step response for the system $y(n)=0.25 y(n-2)+x(n)$. Also, $\mathrm{y}(-1)=0, \mathrm{y}(-2)=1$.
2. Determine the impulse response and the step response of the causal system $y(n)=y(n-1)-0.5 y(n-2)+$ $\mathrm{x}(\mathrm{n})+\mathrm{x}(\mathrm{n}-1)$. Determine whether the system is stable.
3. Consider the signal $x(n)=2+2 \cos (\pi n / 4)+\cos (\pi n / 2)+0.5 \cos (3 \pi n / 4)$. Determine its DTFS and evaluate the power of the signal.
4. Express the Fourier transform of the following signals in terms of $X(\omega)$, where $x(n) \leftrightarrow X(\omega)$.
(a) $y(n)=x *(-n)$.
(b) $\mathrm{y}(\mathrm{n})=\mathrm{x}(\mathrm{n} / 2)$ for n even and 0 for n odd.

Recitation 5 solution by Jung Hymn Brae

$$
\text { 1. } \begin{aligned}
& Y^{+}(z)=0.25 z^{-2}\left(Y^{+}(z)+y(-2) z^{2}+y(-1) z\right)+\frac{1}{1-z^{-1}} \\
&=0.25 z^{-2}\left(Y+(z)+z^{2}\right)+\frac{1}{1-z^{-1}} \\
&\left(1-0.25 z^{-2}\right) Y^{+}(z)=0.25+\frac{1}{1-z^{-1}} \\
& Y^{+}(z)=\frac{0.25}{1-0.25 z^{-2}}+\frac{1}{\left(1-z^{-1}\right)\left(1-0.25 z^{-2}\right)} \\
&=\frac{1.25-0.25 z^{-1}}{\left(1-0.25 z^{-2}\right)\left(1-z^{-1}\right)} \\
&=\frac{1.25 z^{3}-0.25 z^{2}}{(z+0.5)(z-0.5)(z-1)} \\
& \frac{Y^{+}(z)}{z}=\frac{1.25 z^{2}-0.25 z}{(z+0.5)(z-0.5)(z-1)} \\
&=\frac{A_{1}}{z+0.5}+\frac{A_{2}}{z-0.5}+\frac{A_{3}}{z-1} \\
& A_{1}=\frac{1.25 \cdot 0.5^{2}+0.25 \cdot 0.5}{-1 .-1.5}=\frac{7}{24} \\
& A_{2}=-\frac{3}{8} \\
& A_{3}=\frac{4}{3} \\
& \therefore y(n)=\left(\frac{7}{24}(-0.5)^{n}-\frac{3}{8}(0.5)^{n}+\frac{4}{3}\right) u(n)
\end{aligned}
$$

2.

$$
\begin{aligned}
& Y(z)=Z^{-1} Y(z)+0.5 z^{-2} Y(z)+X(z)+Z^{-1} X(z) \\
& H(z)=\frac{Y(z)}{X(z)}=\frac{1+z^{-1}}{1-z^{-1}-0.5 z^{-2}}=\frac{z^{2}+z}{z^{2}-z-0.5} \\
& \frac{H(z)}{z}=\frac{Z+1}{Z^{2}-z-0.5}=\frac{A_{1}}{z-\frac{1+\sqrt{3}}{2}}+\frac{A_{2}}{z-\frac{1-\sqrt{3}}{2}} \\
& A_{1}=\frac{1+\sqrt{3}}{2}, A_{2}=\frac{1-\sqrt{3}}{2} \\
& h(n)=\left(\left(\frac{1+\sqrt{3}}{2}\right)^{n+1}+\left(\frac{1-\sqrt{3}}{2}\right)^{n+1}\right) n(n) .
\end{aligned}
$$

Let $y_{1}(n)$ be the step response. Then,

$$
\begin{gathered}
Y_{1}(z)=H(z) \cdot \frac{z}{z-1}=\frac{z^{3}+z^{2}}{\left(z^{2}-z-0.5\right)(z-1)} \\
\frac{Y_{1}(z)}{z}=\frac{z^{2}+z}{\left(z^{2}-z-0.5\right)(z-1)}=\frac{A_{1}}{z-\frac{1+\sqrt{3}}{2}}+\frac{A_{2}}{z-\frac{1-\sqrt{3}}{2}}+\frac{A_{3}}{z-1} \\
A_{1}=\frac{5+3 \sqrt{3}}{2}, \\
A_{2}=\frac{5-3 \sqrt{3}}{2}, \\
A_{3}=-4 \\
\therefore Y_{1}(n)=\left(\frac{5+3 \sqrt{3}}{2}\left(\frac{1+\sqrt{3}}{2}\right)^{n}+\frac{5-3 \sqrt{3}}{2}\left(\frac{1-\sqrt{3}}{2}\right)^{n}-4\right) u(n)
\end{gathered}
$$

Since $\frac{1+\sqrt{3}}{2}>1$, the system is not stable.
3. $N=8$.

$$
\begin{aligned}
& x(n)=2+e^{j \frac{\pi}{4} n}+e^{-j \frac{\pi}{4} n}+\frac{1}{2} e^{j \frac{\pi}{2} n}+\frac{1}{2} e^{-j \frac{\pi}{2} n}+\frac{1}{4} e^{i \frac{3 \pi n}{4}}+\frac{1}{4} e^{-j \frac{3 \pi n}{4}} \\
&=\sum_{k=0}^{7} c_{k} e^{j \frac{\pi k n}{4}} \\
&=\sum_{k=-3}^{4} c_{k} e^{j \frac{\pi k n}{4}} \\
& \therefore C_{0}=2, c_{1}=1, C_{2}=\frac{1}{2}, c_{3}=\frac{1}{4}, c_{4}=0, \\
& C_{5}=C_{-3}=\frac{1}{4}, c_{6}=c_{-2}=\frac{1}{2}, c_{7}=C_{-1}=1 .
\end{aligned}
$$

Using Parseval's relation,

$$
\begin{aligned}
P_{x}=\sum_{k=0}^{7}\left|C_{k}\right|^{2} & =\left(4+1+\frac{1}{4}+\frac{1}{16}+\frac{1}{16}+\frac{1}{4}+1\right) \\
& =\frac{53}{8}
\end{aligned}
$$

4. (9) Let $x_{1}(\omega)$ DTFT of $x^{*}(-n)$

Then, $\quad x_{1}(\omega)=\sum_{n=-\infty}^{\infty} x^{*}(-n) e^{-j \omega n}$

$$
\begin{aligned}
& =\sum_{n^{\prime}=-\infty}^{\infty} x^{\star}\left(n^{\prime}\right) e^{j \omega n^{\prime}} \\
& =\sum_{n^{\prime}=-\infty}^{\infty}\left(x\left(n^{\prime}\right) e^{-j \omega n^{\prime}}\right)^{*} \\
& =\left(\sum_{n^{\prime}=-\infty}^{\infty} x\left(n^{\prime}\right) e^{-j \omega n^{\prime}}\right)^{*} \\
& =x^{*}(\omega)
\end{aligned}
$$

$$
\text { (b) } \begin{aligned}
Y(\omega) & =\sum_{n=-}^{\infty} y(n) e^{-j \omega n} \\
& =\sum_{k=-\infty}^{\infty} y(2 k) e^{-j \omega 2 k} \\
& =\sum_{k=-\infty}^{\infty} x(k) e^{-j(2 \omega) k} \\
& =X(2 \omega)
\end{aligned}
$$

