Review Session 1 - EECS 451, Winter 2009

Feb 11th, 2009

OUTLINE

- Review of important concepts (Chapters 1-3)
- Exercises (Homework 1-4)

Concepts from Chapter 1-2

1. Sampling theorem: If a continuous signal $x_{a}(t)$ is bandlimited (i.e. $\left.X_{a}(F)=0 \forall|F|>F_{\max }\right)$, the signal can be reconstructed back exactly from its samples

- if the sampling rate is greater than the Nyquist rate $\left(2 F_{\max }\right)$, i.e. $F_{s} \geq 2 F_{\max }$
- otherwise, we have aliasing

2. Classification of general DT systems: For $y(n)=\mathcal{T}(x(n))$, the system is

- memoryless if $y(n)$ depends only on the present input
- causal if $y(n)$ does not depend on the future inputs
- time-invariant if $\mathcal{T}(x(n-k))=y(n-k)$
- linear if $\mathcal{T}\left(a_{1} x_{1}(n)+a_{2} x_{2}(n)\right)=a_{1} \mathcal{T}\left(x_{1}(n)\right)+a_{2} \mathcal{T}\left(x_{2}(n)\right)$
- BIBO stable if every bounded input produces a bounded output

3. Impulse response

- Response of the system to an impulse input, i.e. $h(n):=\mathcal{T}(\delta(n))$
- Impulse response can be defined for any system

4. Linear Time Invariant (LTI) system

- Is completely characterized by its impulse response $h(n)$
- The output $y(n)$ is given by $y(n)=x(n) * h(n)=\sum_{k=-\infty}^{\infty} x(n-k) h(k)$
- Is causal iff $h(n)=0 \forall n<0$
- Is BIBO stable iff $\sum_{n=-\infty}^{\infty}|h(n)|<\infty$

5. Classification of LTI DT systems by "system function $H(z)$ " $(h(n) \stackrel{Z}{\hookrightarrow} H(z))$. The system is

- causal iff the ROC is the exterior of a circle of radius $r<\infty$ and includes $z=\infty$
- BIBO stable iff the ROC includes the unit circle

6. The system defined by linear constant coefficient difference equation $y(n)=-\sum_{k=1}^{N} a_{k} y(n-$ $k)+\sum_{k=0}^{M} b_{k} x(n-k)$

- is LTI and causal
- is called a Moving average (MA) system if $N=0$ and $M>0$
- is called an Auto Regressive (AR) system if $N>0$ and $M=0$
- is called an Auto Regressive Moving Average (ARMA) system if $N>0$ and $M>0$
- has a rational form $H(z)$

Concepts from Chapter 3

1. 2 -sided z-transforms: For a given DT signal $x(n)$

- $X(z):=\sum_{n=-\infty}^{\infty} x(n) z^{-n}$, where z is complex valued
- z transform is linear

2. ROC (Region of Convergence)

- The set of values of z for which the sequence $x(n) z^{-n}$ is absolutely summable, i.e. $\left\{z \in \mathbf{C}: \sum_{n=-\infty}^{\infty}\left|x(n) z^{-n}\right|<\infty\right\}$, where \mathbf{C} is the set of complex numbers.
- Simply put, ROC indicates the region of z where $X(z)$ is finite.
- By definition, ROC cannot contain any poles.

3. The shape of ROCs

- The ROC of an anti-causal signal is of the form $|z|<|a|$.
- The ROC of a causal signal is of the form $|z|>|a|$.
- The ROC of a two sided signal is of the form $|a|<|z|<|b|$.
- The ROC of a finite length signal is the entire z-space except for $z=0$ and/or $z=\infty$.

4. Useful z-transformation pairs

- If $x(n)=a^{n} u(n)$, then $X(z)=\frac{z}{z-a}, \mathrm{ROC}=|z|>|a|$.
- If $x(n)=-a^{n} u(-n-1)$, then $X(z)=\frac{z}{z-a}, \operatorname{ROC}=|z|<|a|$.

5. Properties of z-transform: We have $x(n) \stackrel{Z}{\longleftrightarrow} X(z)$ and $R O C_{X}=r_{2}<|z|<r_{1}$

- Linearity: $a_{1} x_{1}(n)+a_{2} x_{2}(n) \stackrel{Z}{\longleftrightarrow} a_{1} X_{1}(z)+a_{2} X_{2}(z), R O C \geq R O C_{X_{1}} \cap R O C_{X_{2}}$
- Time shifting: $x(n-k) \stackrel{Z}{\longleftrightarrow} z^{-k} X(z), R O C=R O C_{X}$ except $z=0$ or $z=\infty$.
- Scaling in the z-domain: $a^{n} x(n) \stackrel{Z}{\longleftrightarrow} X\left(a^{-1} z\right), R O C=|a| r_{2}<|z|<|a| r_{1}$
- Time reversal: $x(-n) \stackrel{Z}{\longleftrightarrow} X\left(z^{-1}\right), R O C=\frac{1}{r_{1}}<|z|<\frac{1}{r_{2}}$
- Differentiation in the z-domain: $n x(n) \stackrel{Z}{\longleftrightarrow}-z \frac{d X(z)}{d z}, R O C=R O C_{X}$
- Convolution: $x_{1}(n) * x_{2}(n) \stackrel{Z}{\leftrightarrow} X_{1}(z) X_{2}(z), R O C \geq R O C_{X_{1}} \cap R O C_{X_{2}}$
- Correlation: $x_{1}(n) * x_{2}(-n) \stackrel{Z}{\longleftrightarrow} X_{1}(z) X_{2}\left(z^{-1}\right), R O C \geq R O C_{X_{1}(z)} \cap R O C_{X_{2}\left(z^{-1}\right)}$

6. 1 -sided z-transforms: For a given DT signal $x(n)$

- $X^{+}(z):=\sum_{n=0}^{\infty} x(n) z^{-n}$, where z is complex valued.
- Unique for causal signals
- One sided z-transform of $x(n)$ is identical to the 2 -sided z-transform of $x(n) u(n)$
- For causal signals, $X^{+}(z)$ and $X(z)$ are the same
- ROC of $X^{+}(z)$ is always exterior of a circle

7. Properties of 1 -sided z-transform: We have $x(n) \stackrel{Z^{+}}{\leftrightarrow} X^{+}(z)$

- Almost all properties of the two-sided z-transform carry over to the one-sided z-transform
- Time delay: $x(n-k) \stackrel{Z^{+}}{\leftrightarrow} z^{-k}\left[X^{+}(z)+\sum_{n=1}^{k} x(-n) z^{n}\right]$
- Time advance: $x(n+k) \stackrel{Z^{+}}{\leftrightarrow} z^{k}\left[X^{+}(z)-\sum_{n=0}^{k-1} x(n) z^{-n}\right]$

8. Useful theorems on z-transforms

- Initial value theorem: If $x(n)$ is causal, then $x(0)=\lim _{z \rightarrow \infty} X(z)$
- Final value theorem: $\lim _{n \rightarrow \infty} x(n)=\lim _{z \rightarrow 1}(z-1) X^{+}(z)$, if the ROC contains the unit circle

9. Inverse z-transforms: Partial fraction expansion
10. Zero state response vs Zero input response

ALL THE BEST

