PRINT YOUR NAME HERE:

HONOR CODE PLEDGE: "I have neither given nor received aid on this exam, nor have I concealed any violations of the honor code." Open book; SHOW ALL OF YOUR WORK!

SIGN YOUR NAME HERE:

(30) 1. A fair $\left(\operatorname{Pr}[\right.$ heads $\left.]=\frac{1}{2}\right)$ coin is flipped n times (independent flips), resulting in k heads. Note: Do not use the Demoivre-Laplace correction in this problem.
(5) a. Compute mean $E[k]$ and variance σ_{k}^{2} as functions of n.
(5) b. If $n=1600$, compute $\operatorname{Pr}[790 \leq k \leq 810]$ (give a specific number).
(5) c. If $n=1600$, compute the largest b such that $\operatorname{Pr}[k \geq b] \geq 0.9$.
(5) d. Compute a quadratic equation for the smallest n such that $\operatorname{Pr}[k \geq 1000] \geq 0.95$.
(5) e. Solve the quadratic equation you computed in (d). What is n ?
(5) f. Let $e=\frac{k}{n}-\frac{1}{2}$. Compute σ_{e}^{2} as a function of n. Compute ${ }_{n \rightarrow \infty}^{\operatorname{LIM}} \sigma_{e}^{2}$.

WRITE YOUR ANSWERS HERE:

(a): $E[k]=$
$\sigma_{k}^{2}=$
(b) $: \operatorname{Pr}[]=$
(c): $b=$
(d):
(e): $n=$
(f): $\sigma_{e}^{2}=$
${ }_{n \rightarrow \infty}^{\operatorname{LIM}} \sigma_{e}^{2}=$
(30) 2. $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{ccc}2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2\end{array}\right]\right) \cdot\left\{\begin{array}{l}\text { Eigenvalues: } \\ \begin{array}{l}0 \\ \text { Eigenvectors: }\end{array}\left[\begin{array}{c}3 \\ 1 \\ 1\end{array}\right]\end{array}\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]\left[\begin{array}{c}3 \\ 1 \\ 1 \\ -2\end{array}\right]\right\}$. For (b) and (e), you may use $\mathcal{N}(\underline{\mu}, K)$ notation for multidimensional Gaussian pdfs.
(5) a. If $x_{1}=2$ and $x_{2}=3$, compute x_{3} (with probability one).
(5) b. Compute the joint marginal pdf $f_{x_{1}, x_{3}}\left(X_{1}, X_{3}\right)$.
(5) c. Let $y=x_{1}+2 x_{2}+3 x_{3}$. Compute σ_{y}^{2} (give a number).
(5) d. Confirm explicitly that the Cauchy-Schwarz inequality holds for x_{1} and x_{2}.
(5) e. If $z=x_{1}-x_{2}$ and $w=x_{1}+x_{2}-2 x_{3}$, compute $f_{z \mid w}(Z \mid W)$.
(5) f. Compute $\left(\hat{x_{1}}\right)_{L S E}\left(x_{3}\right)$, the least-squares estimate of x_{1} based on x_{3}.

WRITE YOUR ANSWERS HERE:

(a): $x_{3}=$
(b): $f_{x_{1}, x_{3}}\left(X_{1}, X_{3}\right)=$
(c): $\sigma_{y}^{2}=$
(d):
(e): $f_{z \mid w}(Z \mid W)=$
$(\mathbf{f}):\left(\hat{x_{1}}\right)_{L S E}\left(x_{3}\right)=$
\#3:
$\sum:$
(40) 3. A coin with unknown $a=\operatorname{Pr}[h e a d s]$ is flipped N times, where N is known. We observe $r=\#$ heads in N flips. Flips are independent of each other.
(05) a. Compute $\hat{a}_{M L E}(R)=$ maximum likelihood estimator of a based on R.

Now we are given the a priori $\operatorname{pdf} f_{a}(A)=10 e^{-10 A}, A>0 ; 0$ otherwise.
Neglect $\operatorname{Pr}[a>1]=e^{-10}=0.000045$ in (b) and (c).
(05) b. Compute a quadratic equation for $\hat{a}_{M A P}(R)=$ maximum a posteriori probability (05) c. If we observe $R=20$ heads in $N=92$ flips, compute $\hat{a}_{M A P}(20)$. estimator.

Now we are given a priori pdf $f_{a}(A)=\frac{1}{3} \delta\left(A-\frac{1}{4}\right)+\frac{2}{3} \delta\left(A-\frac{1}{2}\right)$
(05) d. Compute an expression for $\hat{a}_{L S E}(R)=$ least-squares estimator.
(05) e. If we observe $R=2$ heads in $N=3$ flips, compute $\hat{a}_{L S E}(2)$.
(10) f. Compute $E[a], E[r], E[a r], \lambda_{a r}$ for $N=144$ using iterated expectation.

HINT: All but $E[a]$ come out to be positive integers. NOTE: $\sigma_{r}^{2}=321$.
$(05) \mathrm{g}$. Compute an expression for $\hat{a}_{L L S E}(R)=$ linear least-squares estimator.

WRITE YOUR ANSWERS HERE:

(a): $\hat{a}_{M L E}=$
(b):
(c): $\hat{a}_{M A P}(20)=$
(d): $\hat{a}_{L S E}=$
(e): $\hat{a}_{L S E}(2)=$
(f): $E[a]=$
$E[r]=$
$E[a r]=\quad \lambda_{a r}=$
(g): $\hat{a}_{L L S E}=$

