PRINT YOUR NAME HERE:

HONOR CODE PLEDGE: "I have neither given nor received aid on this exam, nor have I concealed any violations of the honor code." Open book; SHOW ALL OF YOUR WORK!

SIGN YOUR NAME HERE:

(30) 1. A fair $(\Pr[heads] = \frac{1}{2})$ coin is flipped *n* times (independent flips), resulting in *k* heads. Note: Do not use the Demoivre-Laplace correction in this problem.

- (5) a. Compute mean E[k] and variance σ_k^2 as functions of n. (5) b. If n = 1600, compute $Pr[790 \le k \le 810]$ (give a specific number).
- (5) c. If n = 1600, compute the largest b such that $Pr[k \ge b] \ge 0.9$.
- (5) d. Compute a quadratic equation for the smallest n such that $Pr[k \ge 1000] \ge 0.95$.
- (5) e. Solve the quadratic equation you computed in (d). What is n? (5) f. Let $e = \frac{k}{n} \frac{1}{2}$. Compute σ_e^2 as a function of n. Compute $\lim_{n \to \infty} \sigma_e^2$.

WRITE YOUR ANSWERS HERE:

(a): $E[k] =$	$\sigma_k^2 =$	(b): Pr[]=	(c): b =
(d):	(e): n=	(f): $\sigma_e^2 =$	$\lim_{n\to\infty}\sigma_e^2 =$

(30) 2.
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} \right) \cdot \begin{cases} \text{Eigenvalues} : & 0 & 3 & 3 \\ \text{Eigenvectors} : & \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} \end{cases}$$
For (b) and (e), you may use $\mathcal{N}(\mu, K)$ notation for multidimensional Gaussian pdfs.

- (5) a. If $x_1 = 2$ and $x_2 = 3$, compute x_3 (with probability one).

- (5) b. Compute the joint marginal pdf $f_{x_1,x_3}(X_1, X_3)$. (5) c. Let $y = x_1 + 2x_2 + 3x_3$. Compute σ_y^2 (give a number). (5) d. Confirm *explicitly* that the Cauchy-Schwarz inequality holds for x_1 and x_2 .
- (5) e. If $z = x_1 x_2$ and $w = x_1 + x_2 2x_3$, compute $f_{z|w}(Z|W)$.
- (5) f. Compute $(\hat{x}_1)_{LSE}(x_3)$, the least-squares estimate of x_1 based on x_3 .

WRITE YOUR ANSWERS HERE:

(a): $x_3 =$	(b): $f_{x_1,x_3}(X_1,X_3) =$	(c): $\sigma_y^2 =$
(d):	(e): $f_{z w}(Z W) =$	(f): $(\hat{x_1})_{LSE}(x_3) =$

#1:

#2:

#3:

 \sum :

(40) 3. A coin with unknown a = Pr[heads] is flipped N times, where N is known. We observe r=#heads in N flips. Flips are independent of each other.

(05) a. Compute $\hat{a}_{MLE}(R)$ =maximum likelihood estimator of a based on R.

Now we are given the *a priori* pdf $f_a(A) = 10e^{-10A}$, A > 0; 0 otherwise. Neglect $Pr[a > 1] = e^{-10} = 0.000045$ in (b) and (c).

- (05) b. Compute a quadratic equation for $\hat{a}_{MAP}(R)$ =maximum a posteriori probability
- (05) c. If we observe R = 20 heads in N = 92 flips, compute $\hat{a}_{MAP}(20)$. estimator.

Now we are given a priori pdf $f_a(A) = \frac{1}{3}\delta(A - \frac{1}{4}) + \frac{2}{3}\delta(A - \frac{1}{2})$

- (05) d. Compute an expression for $\hat{a}_{LSE}(R)$ =least-squares estimator.
- (05) e. If we observe R = 2 heads in N = 3 flips, compute $\hat{a}_{LSE}(2)$.
- (10) f. Compute $E[a], E[r], E[ar], \lambda_{ar}$ for N = 144 using iterated expectation. HINT: All but E[a] come out to be positive integers. NOTE: $\sigma_r^2 = 321$.
- (05) g. Compute an expression for $\hat{a}_{LLSE}(R)$ =linear least-squares estimator.

WRITE YOUR ANSWERS HERE:

(a): $\hat{a}_{MLE} =$	(b):		(c): $\hat{a}_{MAP}(20) =$		
(d): $\hat{a}_{LSE} =$				(e): $\hat{a}_{LSE}(2) =$	
(f): $E[a] =$	E[r] =	E[ar] =	$\lambda_{ar} =$	(g): $\hat{a}_{LLSE} =$	