PRINT YOUR NAME HERE:

HONOR CODE PLEDGE: "I have neither given nor received aid on this exam, nor have I concealed any violations of the honor code." Open book; SHOW ALL OF YOUR WORK!

SIGN YOUR NAME HERE:

(30) 1. At 6:00 PM, EECS 501 students start arriving for their EECS 501 exam.

ESE students arrive in a Poisson process with average arrival rate $\lambda=5 /$ minute.
CSE students arrive in a Poisson process with average arrival rate $\lambda=4 /$ minute.
EES students arrive in a Poisson process with average arrival rate $\lambda=3 /$ minute.
All students arrive independently of each other.
(05) a. Compute $\operatorname{Pr}[3$ ESE and 2 CSE students arrive between 6:00 and 6:02]. Simplify.
(05) b. Compute pdf for $\mathrm{t}=\#$ minutes after 6:00 that the first student of any type arrives.
(05) c. Compute $\operatorname{Pr}[$ exactly 3 of the first 5 students to arrive are ESE students].
(05) d. Compute $\operatorname{Pr}\left[\right.$ the $2^{\text {nd }}$ EES student to arrive arrives after 6:05]. Use Poisson pmf.
(05) e. Compute $\operatorname{Pr}\left[\right.$ the $2^{\text {nd }}$ EES student to arrive arrives after 6:05]. Use Erlang pdf. You may leave your answer to (e) in the form of a definite integral.
(05) f. $x(n)=$ discrete-time random walk with $p=\frac{1}{2}$. Compute $\operatorname{Pr}[x(10)=0]$.

WRITE YOUR ANSWERS HERE:

(a): $\operatorname{Pr}=$
(b): $f_{t}(T)=$
(c): $\operatorname{Pr}=$
(d): $\operatorname{Pr}=$
(e): $\operatorname{Pr}=$
(f): $\operatorname{Pr}=$
(30) 2. Zero-mean white Gaussian WSS random process $u(t)$ has PSD $S_{u}(\omega)=4$. $u(t)$ is input into an LTI system with $h(t)=3 e^{-2 t}, t \geq 0$. The output is $x(t)$.
(05) a. Compute the power spectral density $S_{x}(\omega)$ of the output $x(t)$.
(05) b. Compute the covariance $K_{x}(t, s)$ and variance $\sigma_{x(t)}^{2}$ of $x(t)$.
(05) c. Compute $\operatorname{Pr}[x(7)<6]$. HINT: Recall table of $\operatorname{erf}(x)=\Phi(x)-\frac{1}{2}$ on p.62.
(05) d. Compute the joint pdf $f_{x(3), x(7), x(9)}\left(X_{3}, X_{7}, X_{9}\right)$. You may use \mathcal{N} notation.
(05) e. Compute $\hat{x}(7)_{L S E}$ given the observation that $x(5)=6$.
(05) f. Compute $\hat{x}(7)_{L S E}$ given the observations that $x(5)=0$ and $x(3)=4$.

HINT: THINK first. EXPLAIN YOUR ANSWER FULLY, or you get no credit.
WRITE YOUR ANSWERS HERE:
(a): $S_{x}(\omega)=$
(b): $K_{x}(t, s)=$
$\sigma_{x(t)}^{2}=$
(c): $\operatorname{Pr}=$
(e): $\hat{x}(7)=$
(f): $\hat{x}(7)=$
(d): $f_{x(3), x(7), x(9)}\left(X_{3}, X_{7}, X_{9}\right)=$
(40) 3. $x(n)$ is a 0 -mean stationary Independent Increments (II) random process.
(10) a. Compute $\hat{x}(i)_{L L S E}$ based on $\{x(j), x(k)\}$ for any times $i>j>k>0$.

Use the formula $\hat{x}_{L L S E}(y)=K_{x y} K_{y}^{-1} y$ where $x=x(i)$ and $y=[x(j) x(k)]^{\prime}$.
(05) b. Your answer to (a) should disregard $x(k)$! Explain why this makes sense.
(10) c. If $f_{x(n)}(X)=\frac{2^{n} X^{n-1} e^{-2 X}}{(n-1)!}, X \geq 0$, compute $f_{x(i), x(j)}\left(X_{i}, X_{j}\right)$ for any $i>j>0$.

Let $b(n)$ be a Bernoulli process with $p \neq 1$, and let $y(n)=\prod_{i=1}^{n} b(i)$.
(05) d. Prove that $y(n) \rightarrow 0$ in probability.
(05) e. Prove that $y(n) \rightarrow 0$ in mean square.
(05) f. Prove that $y(n) \rightarrow 0$ with probability one. Use the Borel-Cantelli-based condition.

WRITE YOUR ANSWERS HERE:
(a): $\hat{x}(i)[x(j), x(k)]=$
(c): $f_{x(i), x(j)}\left(X_{i}, X_{j}\right)=$
(b):
(d):
(e):
(f):

