1a. $1=c \int_{0}^{1} d X X \int_{0}^{X} d Y Y=c \int_{0}^{1} d X X \frac{X^{2}}{2}=\left.c \frac{X^{4}}{8}\right|_{0} ^{1} \rightarrow c=8$.
1b. x and y are NOT independent, since pdf has nonsquare support.
HARD WAY: Compute marginal pdfs $f_{x}(X)=\int f_{x, y}(X, Y) d Y$ and $f_{y}(Y)=\int f_{x, y}(X, Y) d X$ and show that $f_{x, y}(X, Y) \neq f_{x}(X) f_{y}(Y)$.

1c. $f_{x}(X)=\int_{0}^{X} d Y 8 X Y=\left.4 X Y^{2}\right|_{0} ^{X}=4 X^{3}, 0<X<1 ; 0$, otherwise.
1d. $f_{y \mid x}(Y \mid X)=\frac{8 X Y}{4 X^{3}}=2 Y / X^{2}, 0<Y<X<1=8 Y, 0<Y<1 / 2$.
1e. $F_{z}(Z)=\operatorname{Pr}[z \leq Z]=\operatorname{Pr}\left[\left(\frac{y}{x}\right) \leq Z\right]=\operatorname{Pr}[y \leq x Z]=8 \int_{0}^{1} d X X \int_{0}^{X Z} d Y Y$
$=4 \int_{0}^{1} d X X(X Z)^{2}=Z^{2}, 0<Z<1 \rightarrow f_{z}(Z)=\frac{d F_{z}}{d Z}=2 Z, 0<Z<1$.
Note if $Z>1$ then upper integral limit changes to X and $F_{z}(Z)=1$.
This makes sense: $y \leq x \rightarrow z=y / x \leq 1 \rightarrow \operatorname{Pr}[z \leq Z>1]=1$.
1f. $\operatorname{Pr}[(x+y)<1]=8 \int_{0}^{1 / 2} d Y Y \int_{Y}^{1-Y} d X X$
$=4 \int_{0}^{1 / 2} d Y Y\left((1-Y)^{2}-Y^{2}\right)=\left.4\left(\frac{Y^{2}}{2}-\frac{2 Y^{3}}{3}\right)\right|_{0} ^{1 / 2}=1 / 6$.
2a. $\operatorname{Pr}[$ second coin heads $]=\left(\frac{2}{3}\right)\left(\frac{3}{4}\right)+\left(\frac{1}{3}\right)\left(\frac{4}{5}\right)=23 / 30$.
2b. $\operatorname{Pr}[\mathrm{A}$ heads \mid second coin heads $]=\frac{P r\left[\begin{array}{c}\text { coin A heads } \\ \text { coin }\end{array}\right]}{\operatorname{Pr}\left[2^{\text {nda }} \text { coids } \text { coinheads }\right]}=\frac{(2 / 3)(3 / 4)}{23 / 30}=15 / 23$.
2c. $\operatorname{Pr}[n$ flips of second coin heads $]=\left(\frac{2}{3}\right)\left(\frac{3}{4}\right)^{n}+\left(\frac{1}{3}\right)\left(\frac{4}{5}\right)^{n}$.
$2 d . \operatorname{Pr}\left[\right.$ A heads $\mid n$ flips of $2^{n d}$ coin heads $]=\left(\frac{2}{3}\right)\left(\frac{3}{4}\right)^{n} /\left[\left(\frac{2}{3}\right)\left(\frac{3}{4}\right)^{n}+\left(\frac{1}{3}\right)\left(\frac{4}{5}\right)^{n}\right]$.
2e. ${ }_{n \rightarrow \infty}^{\text {LiM }}[$ answer to $(\mathrm{d})]=0$ since $\left(\frac{4}{5}\right)^{n}$ dominates $\left(\frac{3}{4}\right)^{n}$.
2f. Coin C is more likely than coin B to land heads indefinitely.
2g. $\operatorname{Pr}[E]=\operatorname{Pr}[E \cap F]+\operatorname{Pr}\left[E \cap F^{\prime}\right] \rightarrow \operatorname{Pr}\left[E \cap F^{\prime}\right]=\operatorname{Pr}[E]-\operatorname{Pr}[E \cap F]$
$=\operatorname{Pr}[E]-\operatorname{Pr}[E] \operatorname{Pr}[F]=\operatorname{Pr}[E](1-\operatorname{Pr}[F])=\operatorname{Pr}[E] \operatorname{Pr}\left[F^{\prime}\right]$
$\rightarrow E, F^{\prime}$ are independent. Q.E.D. All these from Problem Set \#1.
3a. C,Y,0. 3b. U,Y,1. 3c. C,Y,0. 3d. U,Y,0.

