Three There are 3 cards: red/red; red/black; black/black.
Card The cards are shuffled and one chosen at random.
Monte The top of the card is red. $\operatorname{Pr}[$ bottom is red $]=$?
3 possible lines of reasoning to solve this problem:

1. Bottom is red only if chose red/red card $\rightarrow \operatorname{Pr}=1 / 3$.
2. Not black/black, so either red/black or red/red $\rightarrow \operatorname{Pr}=1 / 2$.
3. 5 hidden sides: 2 red and 3 black $\rightarrow \operatorname{Pr}=2 / 5$.

Which is correct? They are ALL wrong! In fact, $\operatorname{Pr}=2 / 3$.
DEF: $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[$ event A occurs, GIVEN THAT event B occurrED].

- Either A occurs or A doesn't occur, even if B occurred.
- Their relative probabilities (ratio) shouldn't change, after restriction to B occurring $\left(A \cap B\right.$ and $\left.A^{\prime} \cap B\right)$.
Want: $\operatorname{Pr}[A \mid B]+\operatorname{Pr}\left[A^{\prime} \mid B\right]=1$ and $\frac{\operatorname{Pr}[A \mid B]}{\operatorname{Pr}\left[A^{\prime} \mid B\right]}=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}\left[A^{\prime} \cap B\right]}$.
Know: $\operatorname{Pr}[A \cap B]+\operatorname{Pr}\left[A^{\prime} \cap B\right]=\operatorname{Pr}[B]$. So just divide this by $\operatorname{Pr}[B]$.
THM: $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A \cap B] / \operatorname{Pr}[B]=\operatorname{Pr}[A \cap B] /\left(\operatorname{Pr}[A \cap B]+\operatorname{Pr}\left[A^{\prime} \cap B\right]\right)$.
NOTE: Forms: $\operatorname{Pr}[A \mid B]=\frac{x}{x+y}$ and $\operatorname{Pr}\left[A^{\prime} \mid B\right]=\frac{y}{x+y}$. Ratio x / y, add to one.
EX: $\operatorname{Pr}[$ Bottom red \mid Top red $]=\frac{\operatorname{Pr}[\text { Top AND Bottom red }]}{\operatorname{Pr}[\text { Top red }]}=\frac{1 / 3}{1 / 2}=2 / 3$.
OR: $\operatorname{Pr}[B R \mid T R]=\frac{\operatorname{Pr}[R R]}{\operatorname{Pr}[R R] \operatorname{Pr}[T R \mid R R]+\operatorname{Pr}[R B] \operatorname{Pr}[T R \mid R B]+\operatorname{Pr}[B B] \operatorname{Pr}[T R \mid B B]}$ $=\frac{1 / 3}{(1 / 3)(1)+(1 / 3)(1 / 2)+(1 / 3)(0)}=2 / 3$ (try drawing a 3 -branch tree) .
Why? BB eliminated; 1 red face up; 2 of 3 remaining faces are red!
Bayes's $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}=\operatorname{Pr}[B \mid A] \frac{\operatorname{Pr}[A]}{\operatorname{Pr}[B]}=\frac{\operatorname{Pr}[B \mid A] \operatorname{Pr}[A]}{\operatorname{Pr}[B \mid A] \operatorname{Pr}[A]+\operatorname{Pr}\left[B \mid A^{\prime}\right] \operatorname{Pr}\left[A^{\prime}\right]}$.
Why? Suppose we are given $\operatorname{Pr}[A]$ (a priori prob. of A occurring).
Now we observe B occurs. How does this change prob. of A ?
i.e.: Compute a posteriori prob. $\operatorname{Pr}[A \mid B]$ of A occurring, given B.

EX: Coin A has $\operatorname{Pr}[$ heads $]=1 / 3$; Coin B has $\operatorname{Pr}[$ heads $]=3 / 4$.
Choose coin at random, flip it, get heads. Compute $\operatorname{Pr}[$ coin A$]$.
Note: Without observing the flip result, $\operatorname{Pr}[$ coin A$]=1 / 2$ (a priori).
But: $\operatorname{Pr}[A \mid H]=\frac{\operatorname{Pr}[H \mid A] \operatorname{Pr}[A]}{\operatorname{Pr}[H \mid A] \operatorname{Pr}[A]+\operatorname{Pr}[H \mid B] \operatorname{Pr}[B]}=\frac{(1 / 3)(1 / 2)}{(1 / 3)(1 / 2)+(3 / 4)(1 / 2)}=\frac{4}{13}<\frac{1}{2}$.
Why? Observed heads \rightarrow more likely chose coin more likely to land heads.

DEF: Decreasing sequence of sets $A_{1} \supset A_{2} \supset A_{3} \supset \ldots \lim _{n \rightarrow \infty} A_{n}=\cap_{n=1}^{\infty} A_{n}$.
Thm: $\operatorname{Pr}\left[{ }_{n \rightarrow \infty} A_{n}\right]=\lim _{n \rightarrow \infty} \operatorname{Pr}\left[A_{n}\right]$ for either increasing or decreasing sets.
Note: We can interchange "limit" and the function "Pr"; Pr is continuous.
Proof: For the increasing sequence $\left\{A_{n}\right\}$, let $B_{n}=A_{n}-A_{n-1}, A_{0}=\phi$. $\operatorname{Pr}\left[A_{n}\right]=\operatorname{Pr}\left[\cup_{i=1}^{n} A_{i}\right]=\operatorname{Pr}\left[\cup_{i=1}^{n} B_{i}\right]=\sum_{i=1}^{n} \operatorname{Pr}\left[B_{i}\right] \quad\left(B_{i} \cap B_{j}=\phi\right)$.
$\lim : \lim _{n \rightarrow \infty} \operatorname{Pr}\left[A_{n}\right]=\sum_{i=1}^{\infty} \operatorname{Pr}\left[B_{i}\right]=\operatorname{Pr}\left[\cup_{i=1}^{\infty} B_{i}\right]=\operatorname{Pr}\left[{ }_{n \rightarrow \infty}^{\lim _{n}} A_{n}\right]$ using the third axiom for countably infinite union of disjoint B_{i}.

- The proof for a decreasing sequence of sets $\left\{A_{n}\right\}$ is similar.

Note: If we start with disjoint $\left\{B_{i}\right\}$ and define $A_{n}=\cup_{i=1}^{n} B_{i}$, and we suppose that continuity of probability is true, we can use this argument to derive the third axiom!
Historically, this is the way Kolmogorov did it in 1933.
DEF: For any sequence of sets $\left\{A_{n}\right\}$, we can define the limsup and liminf: ${\underset{n \rightarrow \infty}{\limsup } A_{n}=\lim _{n \rightarrow \infty}^{\lim } \cup_{i=n}^{\infty} A_{i} ; \quad \liminf _{n \rightarrow \infty}^{\lim } A_{n}=\lim _{n \rightarrow \infty} \cap_{i=n}^{\infty} A_{i} .}_{\text {. }}$
Apply continuity of probability using limsup and liminf, not lim.

- Property: $\left(\limsup _{n \rightarrow \infty} A_{n}\right)^{\prime}=\underset{n \rightarrow \infty}{\liminf } A_{n}^{\prime} ; \quad\left(\liminf _{n \rightarrow \infty} A_{n}\right)^{\prime}={ }_{n \rightarrow \infty}^{\limsup } A_{n}^{\prime}$.

EX1: Spin a wheel of fortune. Compute $\operatorname{Pr}\left[\left\{\frac{1}{2}\right\}\right]$ using cont. of probability.

$$
\operatorname{Pr}\left[\left\{\frac{1}{2}\right\}\right]=\operatorname{Pr}\left[\lim _{n \rightarrow \infty}\left(\frac{1}{2}-\frac{1}{n}, \frac{1}{2}+\frac{1}{n}\right)\right]=\lim _{n \rightarrow \infty} \operatorname{Pr}\left[\left(\frac{1}{2}-\frac{1}{n}, \frac{1}{2}+\frac{1}{n}\right)\right]=\lim _{n \rightarrow \infty} \frac{2}{n}=0
$$

since $A_{n}=\left(\frac{1}{2}-\frac{1}{n}, \frac{1}{2}+\frac{1}{n}\right)$ is a decreasing sequence of sets.
We already knew this, but now we can use this simpler derivation.
EX2: Spin a wheel. Compute $\operatorname{Pr}[$ decimal expansion WON'T contain a 6]. Let $A=\{x: 0 \leq x<1\}$ and the decimal expansion of x has no 6 . $A=[0,1)-[0.6,0.7)-\cup_{\substack{n=0 \\ n \neq 6}}^{9}[0 . n 6,0 . n 7)-\cup_{\substack{i=0 \\ i \neq 6}}^{9} \cup_{\substack{j=0 \\ j \neq 6}}^{9}[0 . i j 6,0 . i j 7)-\ldots$ $A_{n+1}=A_{n}-B_{n}=A_{n}-\underset{\substack{n \neq 6 \\ i_{1}=0 \\ i_{1} \neq 6}}{9} \cdots \cup_{\substack{i_{n}=0 \\ i_{n} \neq 6}}^{9}\left[0 . i_{1} \ldots i_{n} 6,0 . i_{1} \ldots i_{n} 7\right)$. $B_{n} \subset A_{n} \rightarrow \operatorname{Pr}\left[A_{n}-B_{n}\right]=\operatorname{Pr}\left[A_{n}\right]-\operatorname{Pr}\left[B_{n}\right]$. Decreasing sequence.

> Cont. of prob. $\rightarrow \operatorname{Pr}[A]=\lim _{n \rightarrow \infty} \operatorname{Pr}\left[A_{n}\right]=\lim _{n \rightarrow \infty}\left(1-\sum_{i=0}^{n-1} \operatorname{Pr}\left[B_{i}\right]\right)$ $=\lim _{n \rightarrow \infty}\left(1-0.1-9(0.1)^{2}-9^{2}(0.1)^{3}-\ldots-9^{n-1}(0.1)^{n}\right)=\lim _{n \rightarrow \infty}(0.9)^{n}=0$.

Note: Heuristically, $\operatorname{Pr}[$ none of 1 st n digits are 6$]=(0.9)^{n}$. Indpt. digits?

