Recall: $\lim _{n \rightarrow \infty} x_{n}=x \Leftrightarrow$ For any $\epsilon>0, \exists N$ such that $\left|x_{n}-x\right|<\epsilon \quad \forall n>N$.
Given: A sequence of random variables $\left\{x_{1}, x_{2} \ldots\right\}$. Need not be iidrv.
DEF: $x_{n} \rightarrow x$ in probability $\Leftrightarrow \lim _{n \rightarrow \infty} \operatorname{Pr}\left[\left|x_{n}-x\right|>\epsilon\right]=0 \Leftrightarrow \begin{gathered}\text { stochastic } \\ \text { convergence }\end{gathered}$.
EX1: If $\left\{x_{n}\right\}$ iidrv, then sample mean $\hat{M}_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \rightarrow E[x]$ in prob.
Proof: See Estimators handout. Requires both $E[x]$ and σ_{x}^{2} to be finite.
Note: This is weak law of large numbers, since convergence in prob. is weak.
EX2: If $\left\{x_{n}\right\}$ iidrv, $f_{x_{i}}=\frac{1}{A}, 0<X<A$, then $\max \left[x_{1} \ldots x_{n}\right] \rightarrow A$ in prob.
Note: Each of these shows consistency of an estimator ($\# 1$ of prob. set $\# 7$).
DEF: $x_{n} \rightarrow x$ in mean square $\Leftrightarrow \lim _{n \rightarrow \infty} E\left[\left(x_{n}-x\right)^{2}\right]=0 \Leftrightarrow{ }_{n \rightarrow \infty}^{\text {L.I.M. }} x_{n}=x$.
EX: If $\left\{x_{n}\right\}$ iidrv, then $\hat{M}_{n} \rightarrow E[x]$ in mean square=in quadratic mean.
Note: This is Mean Ergodic Thm.: ${ }_{n \rightarrow \infty}^{\text {L.I.M. }} \hat{M}_{n}=E[x]$. Use \hat{M}_{n} unbiased:
Proof: $E\left[\left(\hat{M}_{n}-E[x]\right)^{2}\right]=E\left[\left(\hat{M}_{n}-E\left[\hat{M}_{n}\right]\right)^{2}\right]=\sigma_{\hat{M}_{n}}^{2}=\frac{\sigma^{2}}{n} \rightarrow 0$ if $\sigma^{2}<\infty$.
DEF: $x_{n} \rightarrow x$ with prob. one $\Leftrightarrow \operatorname{Pr}\left[\left\{\omega \in \Omega:{ }_{n \rightarrow \infty} x_{n}(\omega)=x(\omega)\right\}\right]=1$.
Huh? $\operatorname{Pr}[$ set of sample functions that converge to sample point of $x]=1$.
Aliases: Convergence a.s. (almost surely), converg. a.e. (almost everywhere).
How? To show convergence with prob. one, usually use Thm. 3 below.
EX: If $\left\{x_{n}\right\}$ iidrv, then $\hat{M}_{n} \rightarrow E[x]$ a.s. (strong law of large numbers).
Thm. 1: Convergence in mean square \rightarrow convergence in probability.
Proof: Suppose ${ }_{n \rightarrow \infty}^{\text {L.I.M. }} x_{n}=x$. Use Markov inequality: As $n \rightarrow \infty$, $\operatorname{Pr}\left[\left|x_{n}-x\right|>\epsilon\right]=\operatorname{Pr}\left[\left(x_{n}-x\right)^{2}>\epsilon^{2}\right] \leq \frac{E\left[\left(x_{n}-x\right)^{2}\right]}{\epsilon^{2}} \rightarrow 0$. QED.

Thm. 2: Convergence with probability one \rightarrow convergence in probability.
Proof: Let $A_{n}=\left\{\omega \in \Omega:\left|x_{n}(\omega)-x(\omega)\right|>\epsilon\right\}$ and $F_{n}=\cup_{i=n}^{\infty} A_{i}$ (so limsup).
Huh? $A_{n}=$ set of ω s.t. $x_{n}(\omega)$ not yet converged within ϵ at time n. $F_{n}=$ set of ω s.t. $x_{n}(\omega)$ not yet converged within ϵ at any time $\geq n$.
Note: Convergence in probability $\Leftrightarrow \lim _{n \rightarrow \infty} \operatorname{Pr}\left[A_{n}\right]=0$ (see above).
Then: $x_{n} \rightarrow x$ a.e. $\Leftrightarrow 0=\operatorname{Pr}\left[\left\{\omega: \lim _{n \rightarrow \infty}\left|x_{n}(\omega)-x(\omega)\right|>\epsilon\right\}\right]=\operatorname{Pr}\left[{ }_{n \rightarrow \infty} \lim _{n} F_{n}\right]$ $=\lim _{n \rightarrow \infty} \operatorname{Pr}\left[F_{n}\right]$ using cont. of prob. since $\left\{F_{n}\right\}$ is decreasing sequence.
But: $\left({ }_{n \rightarrow \infty}^{\left.\lim _{n \rightarrow \infty} \operatorname{Pr}\left[F_{n}\right]=0\right) \rightarrow\left({ }_{n \rightarrow \infty}^{\lim _{n \rightarrow}} \operatorname{Pr}\left[A_{n}\right]=0\right) \rightarrow \text { convergence in prob. QED. }}\right.$

A: $A_{n} \subset F_{n} \rightarrow \operatorname{Pr}\left[A_{n}\right] \leq \operatorname{Pr}\left[F_{n}\right] \rightarrow\left(\lim \operatorname{Pr}\left[F_{n}\right]=0 \rightarrow \lim \operatorname{Pr}\left[A_{n}\right]=0\right)$.
But: $\lim _{n \rightarrow \infty} \operatorname{Pr}\left[\cup_{i=n}^{\infty} A_{i}\right] \neq \lim _{n \rightarrow \infty} \operatorname{Pr}\left[A_{n}\right]$! Why not?
Lemma: $\lim _{n \rightarrow \infty} \sum_{i=n}^{\infty} \operatorname{Pr}\left[A_{i}\right]=0$ if $\sum_{i=0}^{\infty} \operatorname{Pr}\left[A_{i}\right]<\infty$ (doesn't blow up; is finite).
Huh? Remainder term in infinite series goes to zero if the series converges.
Proof: $\sum_{i=n}^{\infty} \operatorname{Pr}\left[A_{i}\right]=\sum_{i=0}^{\infty} \operatorname{Pr}\left[A_{i}\right]-\sum_{i=0}^{n-1} \operatorname{Pr}\left[A_{i}\right]$ if $\sum_{i=0}^{\infty} \operatorname{Pr}\left[A_{i}\right]$ bounded. Now take the limit of this as $n \rightarrow \infty$. QED.

Thm: Borel-Cantelli Lemma: $\operatorname{Pr}\left[{ }_{n \rightarrow \infty}^{\lim } \cup_{i=n}^{\infty} A_{i}\right]=0$ if $\sum_{i=0}^{\infty} \operatorname{Pr}\left[A_{i}\right]<\infty$.
EX: $A_{i}=A$. Then $\operatorname{Pr}\left[{ }_{n \rightarrow \infty} \cup_{i=n}^{\infty} A_{i}\right]=\operatorname{Pr}[A] \neq 0$ since $\sum_{i=0}^{\infty} \operatorname{Pr}[A] \rightarrow \infty$.
Proof: $\operatorname{Pr}\left[\lim \cup_{i=n}^{\infty} A_{i}\right]=\lim \operatorname{Pr}\left[\cup_{i=n}^{\infty} A_{i}\right] \leq \lim \sum_{i=n}^{\infty} \operatorname{Pr}\left[A_{i}\right]=0$ by Lemma.
Note: Using cont. of prob. and union bound. Use Borel-Cantelli to prove:
Thm. 3: $\left(\sum_{n=0}^{\infty} \operatorname{Pr}\left[\left|x_{n}-x\right|>\epsilon\right]<\infty\right) \rightarrow\left(x_{n} \rightarrow x\right.$ with probability one $)$.
Proof: Apply Borel-Cantelli lemma with $A_{n}=\left\{\omega:\left|x_{n}(\omega)-x(\omega)\right|>\epsilon\right\}$.
$\sum \operatorname{Pr}\left[\left|x_{n}-x\right|>\epsilon\right]<\infty \rightarrow \operatorname{Pr}\left[\lim \cup_{i=n}^{\infty}\left\{\omega:\left|x_{n}-x\right|>\epsilon\right\}\right]=0$.
Now reverse the proof of Thm. 2. QED.
Note: This condition is sufficient, but not necessary, for convergence a.e.
Thm. 4: $\left(\sum_{n=0}^{\infty} \operatorname{Pr}\left[\left|x_{n}-x\right|>\epsilon\right]<\infty\right) \rightarrow\left(x_{n} \rightarrow x\right.$ in probability $)$.
Proof: $\left(\sum_{n=0}^{\infty} \operatorname{Pr}\left[A_{n}\right]<\infty\right) \rightarrow\left(\lim _{n \rightarrow \infty} \operatorname{Pr}\left[A_{n}\right]=0\right)$. QED.
Huh? Infinite series converges \rightarrow its general term converges to zero.

1. In prob is weaker than both mean-square and with prob. 1.
2. With prob. 1 does not imply mean-square; nor the converse.
3. To show with prob. 1, use Thm. 3 (except for your homework!)
