Recall: $\lim_{n \to \infty} x_n = x \Leftrightarrow$ For any $\epsilon > 0, \exists N \text{ such that } |x_n - x| < \epsilon \quad \forall n > N.$ **Given:** A sequence of random variables $\{x_1, x_2 \ldots\}$. Need not be iidry.

DEF: $x_n \to x$ in probability $\Leftrightarrow \lim_{n \to \infty} Pr[|x_n - x| > \epsilon] = 0 \Leftrightarrow \operatorname{convergence}^{\operatorname{stochastic}}$. **EX1:** If $\{x_n\}$ iidrv, then sample mean $\hat{M}_n = \frac{1}{n} \sum_{i=1}^n x_i \to E[x]$ in prob. **Proof:** See Estimators handout. Requires both E[x] and σ_x^2 to be finite. **Note:** This is weak law of large numbers, since convergence in prob. is weak. **EX2:** If $\{x_n\}$ iidrv, $f_{x_i} = \frac{1}{A}, 0 < X < A$, then $\max[x_1 \dots x_n] \to A$ in prob. **Note:** Each of these shows consistency of an estimator (#1 of prob. set #7). **DEF:** $x_n \to x$ in mean square $\Leftrightarrow \lim_{n \to \infty} E[(x_n - x)^2] = 0 \Leftrightarrow \lim_{n \to \infty} x_n = x$. **EX2:** If $\{x_n\}$ iidrv, then $\hat{M}_n \to E[x]$ in mean square=in quadratic mean. **Note:** This is Mean Ergodic Thm.: $\lim_{n \to \infty} \hat{M}_n = E[x]$. Use \hat{M}_n unbiased: **Proof:** $E[(\hat{M}_n - E[x])^2] = E[(\hat{M}_n - E[\hat{M}_n])^2] = \sigma_{\hat{M}_n}^2 = \frac{\sigma^2}{n} \to 0$ if $\sigma^2 < \infty$.

DEF: $x_n \to x$ with prob. one $\Leftrightarrow \Pr[\{\omega \in \Omega : \lim_{n \to \infty} x_n(\omega) = x(\omega)\}] = 1.$

Huh? Pr[set of sample functions that converge to sample point of x]=1.

Aliases: Convergence a.s. (almost surely), converg. a.e. (almost everywhere). How? To show convergence with prob. one, usually use Thm. 3 below. EX: If $\{x_n\}$ iidry, then $\hat{M}_n \to E[x]$ a.s. (strong law of large numbers).

Thm. 1: Convergence in mean square \rightarrow convergence in probability. **Proof:** Suppose $\lim_{n \to \infty} x_n = x$. Use Markov inequality: As $n \to \infty$, $Pr[|x_n - x| > \epsilon] = Pr[(x_n - x)^2 > \epsilon^2] \leq \frac{E[(x_n - x)^2]}{\epsilon^2} \rightarrow 0$. QED.

- **Thm. 2:** Convergence with probability one \rightarrow convergence in probability.
 - **Proof:** Let $A_n = \{\omega \in \Omega : |x_n(\omega) x(\omega)| > \epsilon\}$ and $F_n = \bigcup_{i=n}^{\infty} A_i$ (so limsup).
 - **Huh?** A_n =set of ω s.t. $x_n(\omega)$ not yet converged within ϵ at time n.

 F_n =set of ω s.t. $x_n(\omega)$ not yet converged within ϵ at any time $\geq n$. Note: Convergence in probability $\Leftrightarrow \lim_{n \to \infty} Pr[A_n] = 0$ (see above).

- **Then:** $x_n \to x$ a.e. $\Leftrightarrow 0 = \Pr[\{\omega : \lim_{n \to \infty} |x_n(\omega) x(\omega)| > \epsilon\}] = \Pr[\lim_{n \to \infty} F_n]$ = $\lim_{n \to \infty} \Pr[F_n]$ using cont. of prob. since $\{F_n\}$ is decreasing sequence.
 - **But:** $\binom{\lim}{n \to \infty} \Pr[F_n] = 0 \to \binom{\lim}{n \to \infty} \Pr[A_n] = 0 \to \text{convergence in prob. QED.}$

Q: Why $(\lim_{n \to \infty} Pr[F_n] = 0) \to (\lim_{n \to \infty} Pr[A_n] = 0)$ but not vice-versa? **A:** $A_n \subset F_n \to Pr[A_n] \leq Pr[F_n] \to (\lim Pr[F_n] = 0 \to \lim Pr[A_n] = 0).$ **But:** $\lim_{n \to \infty} Pr[\bigcup_{i=n}^{\infty} A_i] \neq \lim_{n \to \infty} Pr[A_n]!$ Why not?

Lemma: $\lim_{n \to \infty} \sum_{i=n}^{\infty} Pr[A_i] = 0$ if $\sum_{i=0}^{\infty} Pr[A_i] < \infty$ (doesn't blow up; is finite). **Huh?** Remainder term in infinite series goes to zero if the series converges.

Proof: $\sum_{i=n}^{\infty} Pr[A_i] = \sum_{i=0}^{\infty} Pr[A_i] - \sum_{i=0}^{n-1} Pr[A_i]$ if $\sum_{i=0}^{\infty} Pr[A_i]$ bounded. Now take the limit of this as $n \to \infty$. QED.

Thm: Borel-Cantelli Lemma: $Pr[\lim_{n \to \infty} \bigcup_{i=n}^{\infty} A_i] = 0$ if $\sum_{i=0}^{\infty} Pr[A_i] < \infty$.

EX: $A_i = A$. Then $Pr[\lim_{n \to \infty} \bigcup_{i=n}^{\infty} A_i] = Pr[A] \neq 0$ since $\sum_{i=0}^{\infty} Pr[A] \to \infty$.

Proof: $Pr[\lim_{i=n} A_i] = \lim_{i=n} Pr[\bigcup_{i=n}^{\infty} A_i] \le \lim_{i=n} \sum_{i=n}^{\infty} Pr[A_i] = 0$ by Lemma.

Note: Using cont. of prob. and union bound. Use Borel-Cantelli to prove:

Thm. 3: $(\sum_{n=0}^{\infty} Pr[|x_n - x| > \epsilon] < \infty) \to (x_n \to x \text{ with probability one}).$

Proof: Apply Borel-Cantelli lemma with $A_n = \{\omega : |x_n(\omega) - x(\omega)| > \epsilon\}$. $\sum Pr[|x_n - x| > \epsilon] < \infty \rightarrow Pr[\lim \bigcup_{i=n}^{\infty} \{\omega : |x_n - x| > \epsilon\}] = 0.$ Now reverse the proof of Thm. 2. QED.

Note: This condition is sufficient, but not necessary, for convergence a.e.

Thm. 4:
$$(\sum_{n=0}^{\infty} Pr[|x_n - x| > \epsilon] < \infty) \to (x_n \to x \text{ in probability}).$$

Proof:
$$(\sum_{n=0}^{\infty} Pr[A_n] < \infty) \to (\lim_{n \to \infty} Pr[A_n] = 0).$$
 QED.

Huh? Infinite series converges \rightarrow its general term converges to zero.

 $\sum : \overline{\left|\sum Pr[|x_n - x| > \epsilon\right] < \infty|} \xrightarrow{\operatorname{Thm.3}} \overline{\left|\frac{\operatorname{Convg.}}{\operatorname{prob.1}}\right|} \xrightarrow{\operatorname{Thm.2}} \overline{\left|\frac{\operatorname{Convg.}}{\operatorname{inprob.}}\right|} \xrightarrow{\operatorname{Convg.}} \overline{\operatorname{Thm.1}} \overline{\left|L.I.M.\right|}$

- 1. In prob is weaker than both mean-square and with prob. 1.
- 2. With prob. 1 does *not* imply mean-square; nor the converse.
- 3. To show with prob. 1, use Thm. 3 (except for *your* homework!)