
EECS 501 COUNTABLE VS. UNCOUNTABLE SETS Fall 2001

DEF: A set is finite if it has a finite number of elements.
DEF: Two sets A,B are in one-to-one correspondence (”1-1”) if

there exists a 1-1 mapping between elements of A and elements of B.
NOTE: Two finite sets are 1-1 IFF they have same number of elements.

EX: {a, b, c . . . z} and {101, 102 . . . 126} are 1-1 (26 elements each).

NOTE: An infinite set can be 1-1 with a proper subset of itself:
A = {1, 2, 3, 4 . . .} and B = {2, 4, 6, 8 . . .} are 1-1: Mapping b = 2a.
Z = {. . .− 2,−1, 0, 1, 2 . . .} and Y = Z+ = {1, 2, 3 . . .} are 1-1:
1-1 Mapping: z = y/2 if y is even; z = (1− y)/2 if y is odd.

DEF: A set is countably infinite IFF it is 1-1 with {integers}.
i.e.: You can ”count” the elements of the set (this may take forever!).
EX: {even integers} and {odd integers} are countably infinite.

DEF: A set is countable IFF it is either finite or countably infinite.
NOTE: A set is countable IFF it is 1-1 with another countable set.

THM: The set of lattice points Z2 = {(i, j) : i, j ∈ {integers}} is countable.
Proof: A 1-1 mapping between {(i, j) : i = 0, 1, 2 . . . , j = 0, 1, 2 . . .} and

{n : n = 1, 2, 3 . . .} is n = (i + j + 1)(i + j + 2)/2− j.
Can easily extend to negative values as shown above.

THM: The set of Rationals Q = {i/j : i, j ∈ {integers}; j > 0} is countable.
Proof: 1-1 Mapping: Q 3 q = i/j ↔ (i, j) ∈ Z2 is known to be countable.

In fact, Q is 1-1 with a subset of Z2; Q is at most countable!
BUT: Countable Z ⊂ Q, so Q is at least countable → Q is exactly countable.

THM: A countable union of countable sets is countable.
Proof: The ”countable union” is 1-1 with Z+; reindex it with i = 1, 2 . . .

The ”countable sets” can similarly each be reindexed with j = 1, 2 . . .
∪∞i=1Ai = ∪∞i=1{ai1, ai2 . . .} = ∪∞i=1 ∪∞j=1 {ai,j} ↔ (i, j) ∈ Z2.
Again, possible duplications→this is at most countable.
This theorem is particularly useful for showing that a set is countable.

DEF: An uncountable set is NOT 1-1 with any countable set.
THM: (Cantor 1890) [0, 1) (Ω for the wheel of fortune) is an uncountable set!
Proof: Suppose [0, 1) is countable. Index all x ∈ [0, 1) as {x1, x2 . . .}.

Let xn have binary expansion xn = 0.xn1xn2xn3... where xnj = 0 or 1.
Let ynj = 1− xnj . Then y = 0.y11y22y33 . . . 6= xn for all n!

• Since Ω = [0, 1) for the wheel of fortune is uncountable,
the third axiom of probability does not hold in the 0 = 1 ”proof.”



THM: The power set of a countably infinite set A is uncountable.
Proof: Index A as A = {a1, a2 . . .}. Let B ∈ P(A)=power set of A.

Then each B can be indexed by {b1, b2 . . .} where bn = 1 if an ∈ B
and bn = 0 if an /∈ B. The set of all possible such strings of 0’s
and 1’s is 1-1 with [0, 1), represented using a binary expansion.

THM: The set of real numbers R is uncountable and 1-1 with (0, 1).
Proof: R is 1-1 with (0, 1) using r = tan(π(x− 1/2)) where x ∈ (0, 1).
Note: A useful tool: show a set is 1-1 with a set known to be countable.
Note: Omitting fine print: repeating decimals in [0, 1); i/j lowest terms.

Fact: A countable product of countable sets need not be countable.
Proof:

∏∞
n=1{0, 1} is 1-1 with [0, 1), represented using a binary expansion.

Note: If sample space Ω is finite, can use A = P(Ω) as event space.
If Ω is infinite (countable or not), must generate event space A
using some subset of Ω to which probabilities can be assigned.

EX: For the wheel of fortune, Ω = [0, 1) is uncountable and P([0, 1)) = ℵ2.
So generate event space A from all intervals (a, b), 0 ≤ a ≤ b ≤ 1,
since assign Pr[(a, b)] = b− a and compute Pr[B] for any B ∈ B.

DEF: Probability space (Ω,A, P r : A → [0, 1]). Here A = B=Borel sets.
Any subset of [0, 1) or R you are likely to encounter is a Borel set.

REVIEW OF MAPPINGS AND FUNCTIONS

DEF: A mapping or function f : D → R from domain D to range R
assigns to each d ∈ D a unique r ∈ R, where r = f(d).

DEF: f : D → R is onto IFF ∀r ∈ R, ∃d ∈ D s.t. f(d) = r.
DEF: f : D → R is into IFF ∃r ∈ R s.t. f(d) 6= r ∀d ∈ D.
DEF: f : D → R is one-to-one (”1-1”) IFF ∀r ∈ R, ∃!d ∈ D s.t. f(d) = r.

∀=for all; ∃=there exists; s.t.=such that; iff=if and only if.

THM: A mapping that is 1-1 and onto is invertible: ∃f−1 : R → D.
DEF: The image of A ⊂ D is f(A) = {b ∈ R : b = f(a) for some a ∈ A}.
DEF: The preimage of B ⊂ R is f−1(B) = {a ∈ D : f(a) ∈ B}.

THM: A ⊂ f−1(f(A)) since (x ∈ A) → (f(x) ∈ f(A)) → x ∈ f−1(f(A)).

EX: f(x) = x2. f : R→ R is into; f : R→ {x : x ≥ 0} is onto.
f−1(f([2, 3])) = f−1([4, 9]) = [2, 3] ∪ [−3,−2] ⊃ [2, 3] for both.
f : {x : x ≥ 0} → {x : x ≥ 0} is 1-1 and onto and thus invertible.

DEF: Product space A×B = {(a, b) : a ∈ A, b ∈ B}. RN = {N − vectors}.
Watch: [0, 1]3=unit cube vs. {0, 1}3=8 lattice points. A−B = A ∩B′.


