DEF: A set is finite if it has a finite number of elements.
DEF: Two sets A, B are in one-to-one correspondence (" $1-1$ ") if there exists a 1-1 mapping between elements of A and elements of B.
NOTE: Two finite sets are 1-1 IFF they have same number of elements.
EX: $\{a, b, c \ldots z\}$ and $\{101,102 \ldots 126\}$ are 1-1 (26 elements each).
NOTE: An infinite set can be 1-1 with a proper subset of itself:
$A=\{1,2,3,4 \ldots\}$ and $B=\{2,4,6,8 \ldots\}$ are 1-1: Mapping $b=2 a$.
$Z=\{\ldots-2,-1,0,1,2 \ldots\}$ and $Y=Z^{+}=\{1,2,3 \ldots\}$ are 1-1:
1-1 Mapping: $z=y / 2$ if y is even; $z=(1-y) / 2$ if y is odd.
DEF: A set is countably infinite IFF it is $1-1$ with $\{$ integers $\}$.
i.e.: You can "count" the elements of the set (this may take forever!).

EX: \{even integers $\}$ and $\{$ oddintegers $\}$ are countably infinite.
DEF: A set is countable IFF it is either finite or countably infinite.
NOTE: A set is countable IFF it is $1-1$ with another countable set.
THM: The set of lattice points $\mathcal{Z}^{2}=\{(i, j): i, j \in\{$ integers $\}\}$ is countable.
Proof: A 1-1 mapping between $\{(i, j): i=0,1,2 \ldots, j=0,1,2 \ldots\}$ and $\{n: n=1,2,3 \ldots\}$ is $n=(i+j+1)(i+j+2) / 2-j$.
Can easily extend to negative values as shown above.
THM: The set of Rationals $\mathcal{Q}=\{i / j: i, j \in\{$ integers $\} ; j>0\}$ is countable.
Proof: 1-1 Mapping: $\mathcal{Q} \ni q=i / j \leftrightarrow(i, j) \in \mathcal{Z}^{2}$ is known to be countable.
In fact, \mathcal{Q} is $1-1$ with a subset of $\mathcal{Z}^{2} ; \mathcal{Q}$ is at most countable!
BUT: Countable $\mathcal{Z} \subset \mathcal{Q}$, so \mathcal{Q} is at least countable $\rightarrow \mathcal{Q}$ is exactly countable.
THM: A countable union of countable sets is countable.
Proof: The "countable union" is $1-1$ with \mathcal{Z}^{+}; reindex it with $i=1,2 \ldots$
The "countable sets" can similarly each be reindexed with $j=1,2 \ldots$ $\cup_{i=1}^{\infty} A_{i}=\cup_{i=1}^{\infty}\left\{a_{i 1}, a_{i 2} \ldots\right\}=\cup_{i=1}^{\infty} \cup_{j=1}^{\infty}\left\{a_{i, j}\right\} \leftrightarrow(i, j) \in \mathcal{Z}^{2}$.
Again, possible duplications \rightarrow this is at most countable.
This theorem is particularly useful for showing that a set is countable.
DEF: An uncountable set is NOT 1-1 with any countable set.
THM: (Cantor 1890) $[0,1)(\Omega$ for the wheel of fortune) is an uncountable set!
Proof: Suppose [0,1) is countable. Index all $x \in[0,1)$ as $\left\{x_{1}, x_{2} \ldots\right\}$.
Let x_{n} have binary expansion $x_{n}=0 . x_{n 1} x_{n 2} x_{n 3} \ldots$ where $x_{n j}=0$ or 1 .
Let $y_{n j}=1-x_{n j}$. Then $y=0 . y_{11} y_{22} y_{33} \ldots \neq x_{n}$ for all n !

- Since $\Omega=[0,1)$ for the wheel of fortune is uncountable, the third axiom of probability does not hold in the $0=1$ "proof."

THM: The power set of a countably infinite set A is uncountable.
Proof: Index A as $A=\left\{a_{1}, a_{2} \ldots\right\}$. Let $B \in \mathcal{P}(A)=$ power set of A. Then each B can be indexed by $\left\{b_{1}, b_{2} \ldots\right\}$ where $b_{n}=1$ if $a_{n} \in B$ and $b_{n}=0$ if $a_{n} \notin B$. The set of all possible such strings of 0 's and 1 's is $1-1$ with $[0,1)$, represented using a binary expansion.

THM: The set of real numbers \mathcal{R} is uncountable and 1-1 with $(0,1)$.
Proof: \mathcal{R} is $1-1$ with (0,1) using $r=\tan (\pi(x-1 / 2))$ where $x \in(0,1)$.
Note: A useful tool: show a set is $1-1$ with a set known to be countable.
Note: Omitting fine print: repeating decimals in $[0,1) ; i / j$ lowest terms.
Fact: A countable product of countable sets need not be countable.
Proof: $\prod_{n=1}^{\infty}\{0,1\}$ is $1-1$ with $[0,1)$, represented using a binary expansion.
Note: If sample space Ω is finite, can use $\mathcal{A}=\mathcal{P}(\Omega)$ as event space.
If Ω is infinite (countable or not), must generate event space \mathcal{A} using some subset of Ω to which probabilities can be assigned.
EX: For the wheel of fortune, $\Omega=[0,1)$ is uncountable and $\mathcal{P}([0,1))=\aleph_{2}$. So generate event space \mathcal{A} from all intervals $(a, b), 0 \leq a \leq b \leq 1$, since assign $\operatorname{Pr}[(a, b)]=b-a$ and compute $\operatorname{Pr}[B]$ for any $B \in \mathcal{B}$.
DEF: Probability space $(\Omega, \mathcal{A}, \operatorname{Pr}: \mathcal{A} \rightarrow[0,1])$. Here $\mathcal{A}=\mathcal{B}=$ Borel sets. Any subset of $[0,1)$ or \mathcal{R} you are likely to encounter is a Borel set.

REVIEW OF MAPPINGS AND FUNCTIONS

DEF: A mapping or function $f: D \rightarrow R$ from domain D to range R assigns to each $d \in D$ a unique $r \in R$, where $r=f(d)$.
DEF: $f: D \rightarrow R$ is onto IFF $\forall r \in R, \exists d \in D$ s.t. $f(d)=r$.
DEF: $f: D \rightarrow R$ is into IFF $\exists r \in R$ s.t. $f(d) \neq r \quad \forall d \in D$.
DEF: $f: D \rightarrow R$ is one-to-one (" $1-1 "$) IFF $\forall r \in R, \exists!d \in D$ s.t. $f(d)=r$. $\forall=$ for all; $\exists=$ there exists; s.t. $=$ such that; iff=if and only if.

THM: A mapping that is $1-1$ and onto is invertible: $\exists f^{-1}: R \rightarrow D$.
DEF: The image of $A \subset D$ is $f(A)=\{b \in R: b=f(a)$ for some $a \in A\}$.
DEF: The preimage of $B \subset R$ is $f^{-1}(B)=\{a \in D: f(a) \in B\}$.
THM: $A \subset f^{-1}(f(A))$ since $(x \in A) \rightarrow(f(x) \in f(A)) \rightarrow x \in f^{-1}(f(A))$.
EX: $f(x)=x^{2} . f: \mathcal{R} \rightarrow \mathcal{R}$ is into; $f: \mathcal{R} \rightarrow\{x: x \geq 0\}$ is onto. $f^{-1}(f([2,3]))=f^{-1}([4,9])=[2,3] \cup[-3,-2] \supset[2,3]$ for both. $f:\{x: x \geq 0\} \rightarrow\{x: x \geq 0\}$ is 1-1 and onto and thus invertible.

DEF: Product space $A \times B=\{(a, b): a \in A, b \in B\} . \mathcal{R}^{N}=\{N$-vectors $\}$.
Watch: $[0,1]^{3}=$ unit cube vs. $\{0,1\}^{3}=8$ lattice points. $A-B=A \cap B^{\prime}$.

