DEF: A random vector is a vector of random variables $\vec{x}=\left[x_{1} \ldots x_{N}\right]^{\prime}$.
Note: Unless otherwise stated, a random vector is a column vector.
DEF: The mean vector of random vector \vec{x} is $\vec{\mu}=E[\vec{x}]=\left[E\left[x_{1}\right] \ldots E\left[x_{N}\right]\right]^{\prime}$.
DEF: The covariance matrix $K_{x}=\Lambda_{x}$ of \vec{x} is the $N \times N$ matrix whose $(i, j)^{t h}$ element $\left(K_{x}\right)_{i j}=\lambda_{x_{i} x_{j}}=E\left[x_{i} x_{j}\right]-E\left[x_{i}\right] E\left[x_{j}\right]$.
Note: $K_{x}=E\left[(\vec{x}-E[\vec{x}])(\vec{x}-E[\vec{x}])^{\prime}\right]=E\left[\vec{x} \vec{x}^{\prime}\right]-E[\vec{x}] E[\vec{x}]^{\prime}$ (outer products).
Also Outer product $\vec{x} \vec{y}^{\prime}=\left[x_{i} y_{j}\right]=N \times N$ matrix having rank 1 .
Note: Inner product $\vec{x}^{\prime} \vec{y}=\sum x_{i} y_{i}=$ scalar $=$ Trace of outer product.

1. K_{x} is a symmetric matrix: $\left(K_{x}\right)_{i j}=\lambda_{x_{i} x_{j}}=\lambda_{x_{j} x_{i}}=\left(K_{x}\right)_{j i}$.
2. K_{x} is a positive semidefinite matrix: For any vector \vec{a}, the scalar $\vec{a}^{\prime} K_{x} \vec{a}=\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i}\left(K_{x}\right)_{i j} a_{j} \geq 0$.
3. In particular, the diagonal elements of K_{x} have $\left(K_{x}\right)_{i i}=\sigma_{x_{i}}^{2} \geq 0$.

This is necessary but not sufficient for K_{x} to be positive semidefinite.
Thm: Let random vector $\vec{y}=A \vec{x}+\vec{b}$ for any constant matrix A and vector \vec{b}. A need not be square. Then $E[\vec{y}]=A E[\vec{x}]+\vec{b}$ and $K_{y}=A K_{x} A^{\prime}$.
Proof: $K_{y}=E\left[(\vec{y}-E[\vec{y}])(\vec{y}-E[\vec{y}])^{\prime}\right]=E\left[A(\vec{x}-E[\vec{x}])(A(\vec{x}-E[\vec{x}]))^{\prime}\right]$
$=E\left[A(\vec{x}-E[\vec{x}])(\vec{x}-E[\vec{x}])^{\prime} A^{\prime}\right]=A K_{x} A^{\prime}$ using $(A \vec{x})^{\prime}=\vec{x}^{\prime} A^{\prime}$.
\#2: Define rv $y=\vec{a}^{\prime} \vec{x}=\sum_{i=1}^{N} a_{i} x_{i}$. Then $\sigma_{y}^{2}=\vec{a}^{\prime} K_{x} \vec{a} \geq 0$.
DEF: K_{x} has N eigenvalues λ_{i} and associated eigenvectors v_{i} which solve $K_{x} v_{i}=\lambda_{i} v_{i}, i=1 \ldots N$. Fact: K_{x} real \& symmetric $\rightarrow \lambda_{i} \& v_{i}$ real.
Fact: K_{x} is positive semidefinite iff $\lambda_{i} \geq 0, i=1 \ldots N$. Matlab: $\operatorname{eig} \rightarrow \lambda_{i}, v_{i}$.
Thm: Let $V=\left[v_{1}\left|v_{2}\right| \ldots \mid v_{N}\right]$ (matrix of eigenvectors) and $\vec{y}=V^{\prime} \vec{x}$.
Then: $\lambda_{y_{i} y_{j}}=E\left[y_{i} y_{j}\right]-E\left[y_{i}\right] E\left[y_{j}\right]=\lambda_{i} \delta_{i j}=0$ if $i \neq j$.
Proof: $K_{x} v_{i}=\lambda_{i} v_{i} \rightarrow K_{x} V=V \operatorname{diag}\left[\lambda_{i}\right] \rightarrow K_{y}=V^{\prime} K_{x} V=\operatorname{diag}\left[\lambda_{i}\right]$ since ${\overrightarrow{v_{i}}}^{\prime} \overrightarrow{v_{j}}=0$ if $i \neq j$ (V is a unitary matrix: $V^{\prime} V=V V^{\prime}=I$).

Note: This is called decorrelating or (pre)whitening the vector \vec{x}.
It is an essential part of communications and signal processing in noise.
DEF: Cross-correlation matrix $K_{x y}=E\left[(\vec{x}-E[\vec{x}])(\vec{y}-E[\vec{y}])^{\prime}\right] . \quad K_{x y}=K_{y x}^{\prime}$.
Props: $K_{x+y}=K_{x}+K_{y}+K_{x y}+K_{y x}=K_{x}+K_{y}+K_{x y}+K_{x y}^{\prime}$ symmetric. $\vec{z}=A \vec{x}+\vec{b} \rightarrow K_{z y}=A K_{x y}$ and $K_{y z}=K_{y x} A^{\prime}$. Compare to σ_{x+y}^{2}.
DEF: \vec{x} and \vec{y} are uncorrelated if $K_{x y}=[0] \leftrightarrow E\left[\vec{x} \vec{y}^{\prime}\right]=E[\vec{x}] E[\vec{y}]^{\prime}$.

EECS 501 APPLICATIONS OF COVARIANCE MATRICES Fall 2001

1. Let $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] . \quad E[\vec{x}]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] . \quad K_{x}=\left[\begin{array}{ccc}17 & 22 & 27 \\ 22 & 29 & 36 \\ 27 & 36 & 45\end{array}\right]$.

Note: K_{x} symmetric (obvious), positive semidefinite (check: Matlab's "eig").
Q: K_{x} has $\lambda_{3}=0$ and $v_{3}=[1,-2,1]^{\prime}$. Significance of 0 eigenvalue?
A: Let $y=v_{3}^{\prime} \vec{x}=1 x_{1}-2 x_{2}+1 x_{3}$. Then $\sigma_{y}^{2}=v_{3}^{\prime} K_{x} v_{3}=v_{3}^{\prime} \lambda_{3} v_{3}=0$. $y=x_{1}+x_{3}-2 x_{2}=E[y]=v_{3}^{\prime} E[\vec{x}]=0$ with probability 1 .
Not very random vector: $x_{1}=2, x_{2}=3 \rightarrow x_{3}=4$ with probability 1!
2. Suppose eigenvalues are $100,98,95,2,1,0.1$. Significance of grouping? $\vec{y}=V^{\prime} \vec{x} \rightarrow \vec{x}=V \vec{y}=\sum_{i=1}^{N} y_{i} v_{i}$ where y_{i} uncorrelated and $\sigma_{y_{i}}^{2}=\lambda_{i}$.
DEF: This is the finite-dimensional Karhunen-Loeve expansion of \vec{x}.
Idea: Since $\sigma_{y_{i}}^{2} \approx 0$ for $i=4,5,6$, approximate $y_{i} \approx E\left[y_{i}\right]$ for $i=4,5,6$.
i.e.: Treat y_{1}, y_{2}, y_{3} as uncorrelated rvs; y_{4}, y_{5}, y_{6} as known constants.

Point: Have compressed data $\left[x_{1} \ldots x_{6}\right]^{\prime}$ to $\left[y_{1}, y_{2}, y_{3}\right]^{\prime}$; reduced dimension.

EECS 501

MULTIDIMENSIONAL GAUSSIAN PDF
Fall 2001
DEF: $\left\{x_{1} \ldots x_{N}\right\}$ are jointly Gaussian rvs (JGRV) if their joint pdf is $f_{\vec{x}}(\vec{X})=\frac{1}{(2 \pi)^{N / 2} \sqrt{\left|\operatorname{det} K_{x}\right|}} \exp \left[-\frac{1}{2}(\vec{X}-\vec{\mu})^{\prime} K_{x}^{-1}(\vec{X}-\vec{\mu})\right] . \quad \vec{x} \sim N\left(\vec{\mu}, K_{x}\right)$.

1. $\int \ldots \int f_{\vec{x}}(\vec{X}) d X_{1} \ldots d X_{N}=1$: See p.250. $V=$ matrix of eigenvectors.
2. $\vec{y}=V^{\prime} \vec{x} \rightarrow f_{\vec{y}}(\vec{Y})=\frac{1}{|\operatorname{det} V|} f_{\vec{x}}(\vec{X}=V \vec{Y})$ so integrates to 1 . $|\operatorname{det} V|=1$. $=\frac{1}{(2 \pi)^{N / 2} \sqrt{\left|\operatorname{det} V^{\prime} K_{x} V\right|}} \exp \left[-\frac{1}{2}(\vec{Y}-E[\vec{y}])^{\prime} \operatorname{diag}\left[\frac{1}{\lambda_{i}}\right](\vec{Y}-E[\vec{y}])\right]$ $=\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi \lambda_{i}}} \exp \left[-\frac{1}{2}\left(Y_{i}-E\left[y_{i}\right]\right)^{2} / \lambda_{i}\right]=\prod_{i=1}^{N} f_{y_{i}}\left(Y_{i}\right)$
Point: For $\left\{x_{1} \ldots x_{N}\right\}$ JGRV, uncorrelated \leftrightarrow independent. Unusual! JGRV $\left\{x_{1} \ldots x_{n}\right\}$ have diagonal $K_{x} \rightarrow\left\{x_{1} \ldots x_{N}\right\}$ independent rvs.
3. Any linear combination of JGRV is JGRV. $\left\{x_{i}\right\}$ Gaussian $\neq\left\{x_{i}\right\}$ JGRV.
4. $f_{\vec{x}, \vec{y}}(\vec{X}, \vec{Y})$ above form $\rightarrow \vec{x}$ and \vec{y} each JGRV; $f_{\vec{x} \mid \vec{y}}(\vec{X} \mid \vec{Y})$ above form.
5. 2-D: $f_{x, y}(X, Y)=\frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{X^{2}}{\sigma_{x}^{2}}+\frac{Y^{2}}{\sigma_{y}^{2}}-\frac{2 \rho X Y}{\sigma_{x} \sigma_{y}}\right)\right]$ where $K_{[x, y]^{\prime}}=\left[\begin{array}{cc}\sigma_{x}^{2} & \lambda_{x y} \\ \lambda_{x y} & \sigma_{y}^{2}\end{array}\right]=\left[\begin{array}{cc}\sigma_{x} & 0 \\ 0 & \sigma_{y}\end{array}\right]\left[\begin{array}{cc}1 & \rho_{x y} \\ \rho_{x y} & 1\end{array}\right]\left[\begin{array}{cc}\sigma_{x} & 0 \\ 0 & \sigma_{y}\end{array}\right]$.
