DEF: A discrete-time random process=random sequence x(n) is mapping $x(n,\omega): (\mathcal{Z} \times \Omega) \to \mathcal{R}$ where Ω =sample space and $\mathcal{Z} = \{integers\}.$

- 1. Fix $n_o \in \mathcal{Z} \to x(n_o, \omega)$ =random variable indexed by n_o .
- 2. Fix $\omega_o \in \Omega \to x(n, \omega_o)$ =sample function=realization.
- 3. Can think of x(n) as a random vector of infinite length.
- **THM:** Kolmogorov Extension Thm.: Discrete-time random process x(n) is completely specified by its joint pdfs $f_{x(i_1)...x(i_N)}(X_1...X_N)$.
 - **EX:** An *iidrp* (independent identically distributed random process) has $f_{x(i_1)\dots x(i_N)}(X_1\dots X_N) = f_x(X_1)f_x(X_2)\cdots f_x(X_N)$ for any $i_1\dots i_N$.

DEF: x(n) is N^{th} -order stationary if joint pdfs of order N have: $f_{x(i_1)...x(i_N)}(X_1...X_N) = f_{x(i_1+j)...x(i_N+j)}(X_1...X_N)$ for any j.

Means: Shifting time origin does not affect marginal pdfs of order N. **EX:** 1^{st} -order stationary $\Leftrightarrow f_{x(i)}(X) = f_{x(j)}(X) \Leftrightarrow x(n)$ idrp (not iidrp).

THM: N^{th} -order stationary $\rightarrow (N-K)^{th}$ -order stationary for $0 \le K \le N-1$.

Proof: Integrate marginals of order N K times \rightarrow marginals of order N - K.

DEF: x(n) SSS strict sense stationary $\Leftrightarrow N^{th}$ -order stationary for all N.

EX: iidrp x(n) is SSS since $f_{x(i_1)\dots x(i_N)}(X_1\dots X_N) = f_x(X_1)\cdots f_x(X_N)$.

DEF: Mean $\mu(n) = E[x(n)]$. Variance function $\sigma_{x(n)}^2 = K_x(n,n)$ where:

- **DEF:** (Auto)covariance $K_x(i,j) = E[x(i)x(j)] E[x(i)]E[x(j)] = \lambda_{x(i),x(j)}$.
- **DEF:** (Auto)correlation $R_x(i,j) = E[x(i)x(j)] = K_x(i,j)$ if x(n) is 0-mean.
- **DEF:** Cross-covariance $K_{xy}(i,j) = E[x(i)y(j)] E[x(i)]E[y(j)] = K_{yx}(j,i)$.
- **DEF:** x(n) uncorrelated $\Leftrightarrow K_x(i,j) = 0$ for $i \neq j$. $K_x(i,i)$ may vary with *i*.
 - 1. $K_x(i,i) = \sigma_{x(i)}^2 \ge 0.$ (2.) $K_x(i,j) = K_x(j,i)$ (symmetry).
 - 3. $|K_x(i,j)| \leq \sqrt{K_x(i,i)K_x(j,j)}$ (Schwarz inequality).
 - 4. $\sum_{i=1}^{N} \sum_{j=1}^{N} a_i K_x(n_i, n_j) a_j \ge 0$ for any n_i, n_j, N (psd function).

DEF: x(n) WSS wide sense stationary $\Leftrightarrow \mu(n) = \mu$ and $K_x(i, j) = K_x(i-j)$. **Props:** (1) $K_x(0) = \sigma_{x(n)}^2 \ge 0$; (2) $K_x(i) = K_x(-i)$; (3) $|K_x(i)| \le K_x(0)$.

- **Note:** iid \rightarrow SSS \rightarrow N^{th} -order \rightarrow 2^{nd} -order \rightarrow WSS \rightarrow 1^{st} -order \leftrightarrow id.
- **DEF:** x(n) Gaussian $\leftrightarrow \{x(i_1), x(i_2) \dots x(i_N)\}$ JGRV for all $i_1 \dots i_N$.
- **Note:** For Gaussian rp: (1) Kolmogorov specified; (2) $SSS \Leftrightarrow WSS$.

LTI: A discrete-time system is LTI *linear time-invariant* if its response to input x(n) is output $y(n) = \sum_{i=-\infty}^{\infty} h(i)x(n-i) = \sum_{i=-\infty}^{\infty} h(n-i)x(i)$ where h(n)=impulse response of system: $x(n) = \delta(n) \to y(n) = h(n)$. **DEF:** Random $y(n,\omega) = \sum h(n-i)x(i,\omega)$ for each $\omega \in \Omega$ =sample space.

Then: $E[y(n)] = \sum_{i=-\infty}^{\infty} h(n-i)E[x(i)] = \sum_{i=-\infty}^{\infty} h(i)E[x(n-i)].$ $K_y(m,n) = \sum \sum h(m-i)h(n-j)K_x(i,j) = \sum \sum h(i)h(j)K_x(m-i,n-j).$

and:
$$K_{xy}(m,n) = \sum_{i=-\infty}^{\infty} h(i) K_x(m,n-i) = \sum_{i=-\infty}^{\infty} h(n-i) K_x(m,i).$$

- 1. System BIBO stable and $\mu(n), K_x(n,n) < \infty$ \rightarrow these well-defined.
- 2. x(n) Gaussian $\rightarrow y(n)$ Gaussian \rightarrow only need E[y(n)] and $K_y(m, n)$.

Note: x(n) WSS $\rightarrow E[x(i)] = \mu$ and $K_x(i, j) = K_x(i - j)$. Above simplify to: • $E[y(n)] = \sum_{i=-\infty}^{\infty} h(i)\mu = H(e^{j0})\mu = \text{constant.}$

- $K_y(m,n) = \sum \sum h(i)h(j)K_x((m-i) (n-j))$ = $\sum \sum h(i)h(j)K_x((m-n) - i + j) = K_y(m-n)$. y(n) is also WSS.
- $K_{xy}(m,n) = \sum h(i)K_x(m-n+i) = K_{xy}(m-n)$. x, y jointly WSS.

Transfer function: $H(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h(n)e^{-j\omega n}$. $h(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega})e^{j\omega n}d\omega$. PSD: $S_x(e^{j\omega}) = \sum_{n=-\infty}^{\infty} K_x(n)e^{-j\omega n} = K_x(0) + 2\sum_{n=1}^{\infty} K_x(n)\cos(\omega n)$. Then: $S_y(e^{j\omega}) = H(e^{j\omega})H(e^{-j\omega})S_x(e^{j\omega}) = |H(e^{j\omega})|^2S_x(e^{j\omega})$. Useful later!

DEF: A 1-sided discrete-time rp x(n) is defined only for times $n = 0, 1 \dots$

- **DEF:** A 1-sided rp x(n) is II \Leftrightarrow it has (stationary) independent increments \Leftrightarrow $\{x(i_1) - x(0), x(i_2) - x(i_1), x(i_3) - x(i_2) \dots\}$ are independent rvs for all $0 < i_1 < i_2 < \dots$ and pdf of $x(i_1) - x(i_2)$ depends only on $i_1 - i_2$.
- **THM:** y(n) is II, $y(0)=0 \Leftrightarrow y(n) = \sum_{i=1}^{n} x(i)$ for some iidrp x(n). **Proof:** $\Rightarrow: x(n) = y(n) - y(n-1) \rightarrow x(n)$ iidrp and $y(n) = \sum_{i=1}^{n} x(i)$. $\Leftrightarrow: y(n) = \sum_{i=1}^{n} x(i) \rightarrow y(i_2) - y(i_1) = \sum_{i_1+1}^{i_2} x(i)$ are independent rvs.

THM: $y(n) \ \text{II} \rightarrow E[y(n)] = \mu n \text{ and } K_y(i,j) = \sigma^2 \min[i,j] \text{ for constants } \mu, \sigma^2.$

Proof: Apply formulae for LTI systems to h(n) = 1 for $n \ge 0$; 0 for n < 0: $E[y(n)] = \sum_{i=0}^{n-1} 1 \cdot E[x(n-i)] = n\mu$ where $\mu = E[x(n)]$. $K_y(m,n) = \sum_{i=0}^{m-1} \sum_{j=0} n - 11 \cdot 1 \cdot \sigma^2 \delta(i-j) = \sigma^2 \min[m,n]$. Note that an II process is not WSS since $K_y(m,n) \ne K_y(m-n)$.