DEF: A discrete-time random process=random sequence $x(n)$ is mapping $x(n, \omega):(\mathcal{Z} \times \Omega) \rightarrow \mathcal{R}$ where $\Omega=$ sample space and $\mathcal{Z}=\{$ integers $\}$.

1. Fix $n_{o} \in \mathcal{Z} \rightarrow x\left(n_{o}, \omega\right)=$ random variable indexed by n_{o}.
2. Fix $\omega_{o} \in \Omega \rightarrow x\left(n, \omega_{o}\right)=$ sample function=realization.
3. Can think of $x(n)$ as a random vector of infinite length.

THM: Kolmogorov Extension Thm.: Discrete-time random process $x(n)$ is completely specified by its joint pdfs $f_{x\left(i_{1}\right) \ldots x\left(i_{N}\right)}\left(X_{1} \ldots X_{N}\right)$.
EX: An iidrp (independent identically distributed random process) has $f_{x\left(i_{1}\right) \ldots x\left(i_{N}\right)}\left(X_{1} \ldots X_{N}\right)=f_{x}\left(X_{1}\right) f_{x}\left(X_{2}\right) \cdots f_{x}\left(X_{N}\right)$ for any $i_{1} \ldots i_{N}$.

DEF: $x(n)$ is $N^{t h}$-order stationary if joint pdfs of order N have: $f_{x\left(i_{1}\right) \ldots x\left(i_{N}\right)}\left(X_{1} \ldots X_{N}\right)=f_{x\left(i_{1}+j\right) \ldots x\left(i_{N}+j\right)}\left(X_{1} \ldots X_{N}\right)$ for any j.
Means: Shifting time origin does not affect marginal pdfs of order N.
EX: $1^{\text {st }}$-order stationary $\Leftrightarrow f_{x(i)}(X)=f_{x(j)}(X) \Leftrightarrow x(n)$ idrp (not iidrp).
THM: $N^{t h}$-order stationary $\rightarrow(N-K)^{t h}$-order stationary for $0 \leq K \leq N-1$.
Proof: Integrate marginals of order $N K$ times \rightarrow marginals of order $N-K$.
DEF: $x(n)$ SSS strict sense stationary $\Leftrightarrow N^{t h}$-order stationary for all N.
EX: $\operatorname{iidrp} x(n)$ is SSS since $f_{x\left(i_{1}\right) \ldots x\left(i_{N}\right)}\left(X_{1} \ldots X_{N}\right)=f_{x}\left(X_{1}\right) \cdots f_{x}\left(X_{N}\right)$.
DEF: Mean $\mu(n)=E[x(n)]$. Variance function $\sigma_{x(n)}^{2}=K_{x}(n, n)$ where:
DEF: (Auto)covariance $K_{x}(i, j)=E[x(i) x(j)]-E[x(i)] E[x(j)]=\lambda_{x(i), x(j)}$.
DEF: (Auto)correlation $R_{x}(i, j)=E[x(i) x(j)]=K_{x}(i, j)$ if $x(n)$ is 0-mean.
DEF: Cross-covariance $K_{x y}(i, j)=E[x(i) y(j)]-E[x(i)] E[y(j)]=K_{y x}(j, i)$.
DEF: $x(n)$ uncorrelated $\Leftrightarrow K_{x}(i, j)=0$ for $i \neq j$. $K_{x}(i, i)$ may vary with i.

1. $K_{x}(i, i)=\sigma_{x(i)}^{2} \geq 0$. (2.) $K_{x}(i, j)=K_{x}(j, i)$ (symmetry).
2. $\left|K_{x}(i, j)\right| \leq \sqrt{K_{x}(i, i) K_{x}(j, j)}$ (Schwarz inequality).
3. $\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i} K_{x}\left(n_{i}, n_{j}\right) a_{j} \geq 0$ for any n_{i}, n_{j}, N (psd function).

DEF: $x(n)$ WSS wide sense stationary $\Leftrightarrow \mu(n)=\mu$ and $K_{x}(i, j)=K_{x}(i-j)$.
Props: (1) $K_{x}(0)=\sigma_{x(n)}^{2} \geq 0 ;(2) K_{x}(i)=K_{x}(-i) ;(3)\left|K_{x}(i)\right| \leq K_{x}(0)$.
Note: $\mathrm{iid} \rightarrow \mathrm{SSS} \rightarrow N^{\text {th }}$-order $\rightarrow 2^{\text {nd }}$-order \rightarrow WSS $\rightarrow 1^{\text {st }}$-order \leftrightarrow id.
DEF: $x(n)$ Gaussian $\leftrightarrow\left\{x\left(i_{1}\right), x\left(i_{2}\right) \ldots x\left(i_{N}\right)\right\}$ JGRV for all $i_{1} \ldots i_{N}$.
Note: For Gaussian rp: (1) Kolmogorov specified; (2) $\mathrm{SSS} \Leftrightarrow$ WSS.

EECS 501 DISCRETE-TIME RPs THROUGH LTI SYSTEMS Fall 2001
LTI: A discrete-time system is LTI linear time-invariant if its response to input $x(n)$ is output $y(n)=\sum_{i=-\infty}^{\infty} h(i) x(n-i)=\sum_{i=-\infty}^{\infty} h(n-i) x(i)$ where $h(n)=$ impulse response of system: $x(n)=\delta(n) \rightarrow y(n)=h(n)$.
DEF: Random $\rightarrow y(n, \omega)=\sum h(n-i) x(i, \omega)$ for each $\omega \in \Omega=$ sample space.
Then: $E[y(n)]=\sum_{i=-\infty}^{\infty} h(n-i) E[x(i)]=\sum_{i=-\infty}^{\infty} h(i) E[x(n-i)]$. $K_{y}(m, n)=\sum \sum h(m-i) h(n-j) K_{x}(i, j)=\sum \sum h(i) h(j) K_{x}(m-i, n-j)$.
and: $K_{x y}(m, n)=\sum_{i=-\infty}^{\infty} h(i) K_{x}(m, n-i)=\sum_{i=-\infty}^{\infty} h(n-i) K_{x}(m, i)$.

1. System BIBO stable and $\mu(n), K_{x}(n, n)<\infty \rightarrow$ these well-defined.
2. $x(n)$ Gaussian $\rightarrow y(n)$ Gaussian \rightarrow only need $E[y(n)]$ and $K_{y}(m, n)$.

Note: $x(n)$ WSS $\rightarrow E[x(i)]=\mu$ and $K_{x}(i, j)=K_{x}(i-j)$. Above simplify to:

- $E[y(n)]=\sum_{i=-\infty}^{\infty} h(i) \mu=H\left(e^{j 0}\right) \mu=$ constant.
- $K_{y}(m, n)=\sum \sum h(i) h(j) K_{x}((m-i)-(n-j))$
$=\sum \sum h(i) h(j) K_{x}((m-n)-i+j)=K_{y}(m-n) . y(n)$ is also WSS.
- $K_{x y}(m, n)=\sum h(i) K_{x}(m-n+i)=K_{x y}(m-n) . x, y$ jointly WSS.

Transfer function: $H\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} h(n) e^{-j \omega n} . h(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} H\left(e^{j \omega}\right) e^{j \omega n} d \omega$.
PSD: $S_{x}\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} K_{x}(n) e^{-j \omega n}=K_{x}(0)+2 \sum_{n=1}^{\infty} K_{x}(n) \cos (\omega n)$.
Then: $S_{y}\left(e^{j \omega}\right)=H\left(e^{j \omega}\right) H\left(e^{-j \omega}\right) S_{x}\left(e^{j \omega}\right)=\left|H\left(e^{j \omega}\right)\right|^{2} S_{x}\left(e^{j \omega}\right)$. Useful later!
DEF: A 1 -sided discrete-time $\operatorname{rp} x(n)$ is defined only for times $n=0,1 \ldots$
DEF: A 1 -sided $\operatorname{rp} x(n)$ is $\mathrm{II} \Leftrightarrow$ it has (stationary) independent increments \Leftrightarrow $\left\{x\left(i_{1}\right)-x(0), x\left(i_{2}\right)-x\left(i_{1}\right), x\left(i_{3}\right)-x\left(i_{2}\right) \ldots\right\}$ are independent rvs for all $0<i_{1}<i_{2}<\ldots$ and pdf of $x\left(i_{1}\right)-x\left(i_{2}\right)$ depends only on $i_{1}-i_{2}$.

THM: $y(n)$ is II, $\mathrm{y}(0)=0 \Leftrightarrow y(n)=\sum_{i=1}^{n} x(i)$ for some iidrp $x(n)$. Proof:
$\Rightarrow: x(n)=y(n)-y(n-1) \rightarrow x(n)$ iidrp and $y(n)=\sum_{i=1}^{n} x(i)$.
$\Leftarrow: y(n)=\sum_{i=1}^{n} x(i) \rightarrow y\left(i_{2}\right)-y\left(i_{1}\right)=\sum_{i_{1}+1}^{i_{2}} x(i)$ are independent rvs.
THM: $y(n) \mathrm{II} \rightarrow E[y(n)]=\mu n$ and $K_{y}(i, j)=\sigma^{2} \min [i, j]$ for constants μ, σ^{2}.
Proof: Apply formulae for LTI systems to $h(n)=1$ for $n \geq 0 ; 0$ for $n<0$: $E[y(n)]=\sum_{i=0}^{n-1} 1 \cdot E[x(n-i)]=n \mu$ where $\mu=E[x(n)]$.
$K_{y}(m, n)=\sum_{i=0}^{m-1} \sum_{j=0} n-11 \cdot 1 \cdot \sigma^{2} \delta(i-j)=\sigma^{2} \min [m, n]$.
Note that an II process is not WSS since $K_{y}(m, n) \neq K_{y}(m-n)$.

