EECS 501 RESULTS SUMMARY: ERGODICITY Fall 2001

ISSUE: Let $\{x_i, i = 1, 2...\}$ be a sequence of id rvs. Does the sample mean $M_n = \frac{1}{n} \sum_{i=1}^n x_i$ converge to the ensemble mean $E[x_i] = \mu$, and in what sense? "id"="identically distributed"; assume $E[x_i], \sigma_{x_i}^2 < \infty$.

- 1. Weak Law of Large Numbers: $\{x_i\}$ are *independent* $\rightarrow (M_n \rightarrow \mu \text{ in probability})$. PROOF: Lecture in Oct.; "Convergence of RVs" handout. Equivalent to: " M_n is a *weakly consistent* estimator of μ ."
- 2. Mean Ergodic Theorem: $\{x_i\}$ are *independent* $\rightarrow (M_n \rightarrow \mu \text{ in mean square})$: PROOF: "Convergence of RVs" handout. $\underset{n \rightarrow \infty}{\overset{L.I.M.}{n \rightarrow \infty}} M_n = \mu$.
- 3. Strong Law of Large Numbers: $\{x_i\}$ are *independent* $\rightarrow (M_n \rightarrow \mu \text{ with probability one}).$ PROOF: See "Strong Law of Large Numbers" handout.
- 4. $\{x_i\}$ have **finite correlation length**: $K_x(i, j) = 0$ if |i - j| > M for some $M < \infty$ $\rightarrow (M_n \rightarrow \mu \text{ in probability})$. PROOF: Exam #2, Fall 1998.
- 5. $\{x_i\}$ has $\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n K_x(i,n) = 0.$ $\rightarrow (M_n \rightarrow \mu \text{ in mean square}): \lim_{n \to \infty} M_n = \mu.$ PROOF: Problem Set #8 (adapted to a nonzero mean μ).
- 6. $\{x_i\}$ asymptotically uncorrelated: $\lim_{|n|\to\infty} K_x(n) = 0.$ $\to (M_n \to \mu \text{ in mean square}): \lim_{n\to\infty} M_n = \mu.$ PROOF: Stark and Woods p. 449 (cont.-time version). Makes sense: group into sum of uncorrelated sums of RVs.

GIVEN: Observations of continuous-time RP $\{x(t), t > 0\}$, where x(t) fulfills any of the ergodicity conditions overleaf.

- 1. Use $\frac{1}{t} \int_0^t x(s) ds$ to estimate $\mu = E[x(t)]$. Polling (see Problem Set #5). Now assume WLOG $\mu = 0$.
- 2. Use $\frac{1}{t} \int_0^t x^2(s) ds$ to estimate $\sigma_{x(t)}^2 = E[x^2(t)]$. Need $E[x^2(t)], E[x^4(t)] < \infty$ (use Gaussian moment factoring).

3. Spectral estimation using the Periodogram: Note $X(\omega) = \int x(t)e^{-j\omega t}dt \rightarrow E[X(\omega_1)X^*(\omega_2)] = S_x(\omega_1)\delta(\omega_1 - \omega_2).$

Suggests estimating $S_x(\omega)$ by estimating $E[|X(\omega)|^2]$ using: **DEF: Periodogram**= $P = \frac{1}{T} |\int_0^T x(t) e^{-j\omega t} dt|^2$ (note units).

THM: P is asymptotically unbiased estimator of $S_x(\omega)$.

- 1. $E[P] = E[\frac{1}{T} \int_0^T x(t)e^{-j\omega t} dt \int_0^T x(s)e^{j\omega s} ds]$. Simplify:
- 2. $E[P] = \frac{1}{T} \int_0^T \int_0^T R_x(t-s) e^{-j\omega(t-s)} dt \, ds$ (looks familiar).
- 3. Change variables: $t, s \to \tau = t s, z = t + s : |J| = 2$.
- 4. $E[P] = \frac{1}{T} \int_{-T}^{T} d\tau R_x(\tau) e^{-j\omega\tau} \int_{|\tau|}^{2T-|\tau|} \frac{dz}{2}$ $E[P] = \int_{-T}^{T} R_x(\tau) e^{-j\omega\tau} (1 - \frac{|\tau|}{T}) d\tau.$
- 5. Now take $\underset{T \to \infty}{^{LIM}} E[P] = \underset{T \to \infty}{^{LIM}} \int_{-T}^{T} R_x(\tau) e^{-j\omega\tau} (1 \frac{|\tau|}{T}) d\tau$ = $\int_{-\infty}^{\infty} R_x(\tau) e^{-j\omega\tau} d\tau = S_x(\omega)$ provided $\underset{|\tau| \to \infty}{^{LIM}} R_x(\tau) = 0.$
- 6. Periodogram is **not** consistent estimator: $\sigma_P^2 \approx S_x^2(\omega)$. $\sigma_P \approx E[P]$ regardless of data length! So $_{T \to \infty}^{LIM} P \neq S_x(\omega)$.
- 7. See Stark and Woods p. 472 and p. 494.

EXAMPLE OF NON-ERGODICITY

1. Begin by flipping coin A with Pr[heads] = P = 0.5. 2a. Heads \rightarrow use coin B with $P = 0.7 \rightarrow$ Bernoulli process. 2b. Tails \rightarrow use coin C with $P = 0.8 \rightarrow$ Bernoulli process.

3. $M_n \rightarrow 0.7$ or 0.8, but $\mu = 0.75$ for this random process!

THM: Let $\{x_i, i = 1, 2...\}$ be a sequence of iidrvs with finite mean $\mu = E[x_i]$ and finite variance $\sigma_{x_i}^2$. $M_n = \frac{1}{n} \sum_{i=1}^n x_i$ converges with probability one to μ .

PROOF: Thm. 3 from "Convergence of RVs" handout: 1. If $\sum_{n=1}^{\infty} Pr[|M_n - \mu| > \epsilon] < \infty$ then $M_n \to \mu$ with prob 1. This followed from the Borel-Cantelli Lemma.

Q. Can we use Chebyschev inequality directly, as before?

A.
$$Pr[|M_n - \mu| > \epsilon] < \frac{\sigma_{M_n}^2}{\epsilon^2} = \frac{1}{n} \frac{\sigma_x^2}{\epsilon^2}$$
 but $\frac{\sigma_x^2}{\epsilon^2} \sum_{n=1}^{\infty} \frac{1}{n} \to \infty$.

2. Change variables from n to $m = [\sqrt{n}]$ (e.g., [3.6] = 3) and x_i to $\tilde{x}_i = x_i - \mu$, so that $E[\tilde{x}_i] = 0$:

3.
$$\sum_{i=1}^{n} \tilde{x}_i = \sum_{i=1}^{m^2} \tilde{x}_i + \sum_{i=m^2+1}^{n < (m+1)^2} \tilde{x}_i.$$

EX: $x_1 + \dots x_{27} = (x_1 + \dots x_{25}) + (x_{26} + x_{27}); \quad 5 = [\sqrt{27}]$

4.
$$m^2 \le n \to |M_n| \le |M_{m^2}| + \frac{1}{m^2} |\sum_{i=m^2+1}^n \tilde{x}_i|.$$

5.
$$Pr[|M_{m^2}| > \epsilon] < \frac{\sigma_{M_{m^2}}^2}{\epsilon^2} = \frac{1}{m^2} \frac{\sigma_x^2}{\epsilon^2}$$
 as above,
but now $\frac{\sigma_x^2}{\epsilon^2} \sum_{m=1}^{\infty} \frac{1}{m^2} = \frac{\sigma_x^2}{\epsilon^2} \frac{\pi^2}{6} < \infty!$
So $M_{m^2} \to 0$ with probability one.

- 6. $Pr[\frac{1}{m^2}|\sum_{i=m^2+1}^n \tilde{x}_i| > \epsilon] < \frac{(n-m^2)\sigma_x^2}{m^4\epsilon^2} < \frac{(2m+1)\sigma_x^2}{m^4\epsilon^2}$ since $m^2 = [\sqrt{n}]^2 \le n < ([\sqrt{n}]+1)^2 = m^2 + (2m+1).$
- 7. But $\sum_{m=1}^{\infty} \frac{(2m+1)\sigma_x^2}{m^4\epsilon^2} < \sum_{m=1}^{\infty} \frac{\sigma_x^2}{m^2\epsilon^2} = \frac{\pi^2}{6} \frac{\sigma_x^2}{\epsilon^2} < \infty.$ So $\frac{1}{m^2} \sum_{i=m^2+1}^n \tilde{x}_i \to 0$ with probability one.

8. From the bound in #4, $M_n \rightarrow 0$ with probability one.

EECS 501

POISSON RANDOM SAMPLING OF SIGNALS

Fall 2001

THM: Let x(t) be deterministic with $E = \int x^2(t)dt < \infty$. Sample x(t) at the arrival times t_n of a Poisson process. Then $\hat{X}(\omega) = \frac{1}{\lambda} \sum x(t_n)e^{-j\omega t_n}$ is an unbiased, weakly consistent (as $\lambda \to \infty$) estimator of $X(\omega) = \int x(t)e^{-j\omega t}dt$.

1a. $p(t) = \text{Poisson counting process with avg. arrival rate } \lambda$. 1b. $z(t) = \sum \delta(t - t_n)$ where t_n are Poisson arrival times. 2. Then $p(t) \rightarrow |\text{Differentiator} \quad d/dt| \rightarrow z(t)$ 3. Also note $\hat{X}(\omega) = \int x(t)e^{-j\omega t}\frac{z(t)}{\lambda}dt$. 4. $E[z(t)] = E\left[\frac{dp}{dt}\right] = \frac{d}{dt}E[p(t)] = \frac{d}{dt}(\lambda t) = \lambda$. 5. $E[\hat{X}(\omega)] = \int x(t)e^{-j\omega t}\frac{E[z(t)]}{\lambda}dt = X(\omega)$. Thus $\hat{X}(\omega)$ is an unbiased estimator of $X(\omega)$. 6. Let $\tilde{z}(t) = z(t) - \lambda$ and $\tilde{p}(t) = p(t) - \lambda t$; both 0-mean. 7. $K_z(t,s) = E[\tilde{z}(t)\tilde{z}(s)] = E\left[\frac{\partial \tilde{p}(t)}{\partial t}\frac{\partial \tilde{p}(s)}{\partial s}\right]$ $= \frac{\partial}{\partial t}\frac{\partial}{\partial s}K_p(t,s) = \frac{\partial}{\partial t}\frac{\partial}{\partial s}\lambda MIN[t,s] = \lambda\delta(t-s)$. 8. $\sigma_{\hat{X}(\omega)}^2 = \frac{1}{\lambda^2}\int\int x(t)x(s)K_z(t,s)dt\,ds$ $= \frac{1}{\lambda^2}\int\int x(t)x(s)\lambda\delta(t-s)dt\,ds = \frac{E}{\lambda}$. 9. $\sum_{\lambda\to\infty}^{LIM}\sigma_{\hat{X}(\omega)}^2 = 0 \rightarrow \hat{X}(\omega)$ is a consistent estimator of $X(\omega)$.

- 1. A. Papoulis, Probability, etc., 3rd ed., p. 383-4.
- F.J. Beutler, "Alias Free Randomly Timed Sampling of Stochastic Processes," *IEEE Trans. Info. Th.*, 1970.
 Fred Beutler is a Professor in EE:Systems here at U-M!