EECS 501 RESULTS SUMMARY: ERGODICITY Fall 2001

ISSUE: Let {z;,i=1,2...} be a sequence of id rvs.
Does the sample mean M,, = % > o, x; converge to
the ensemble mean E[x;] = u, and in what sense?
”id”="identically distributed”; assume E[z;], 02 < oo.

1. Weak Law of Large Numbers:
{x;} are independent— (M,, — i in probability).
PROOF': Lecture in Oct.; ” Convergence of RVs” handout.
Equivalent to: ” M, is a weakly consistent estimator of u.”

2. Mean Ergodic Theorem:
{x;} are independent— (M,, — u in mean square):
PROOF: ”Convergence of RVs” handout. /M M, = L.

n—oo

3. Strong Law of Large Numbers:
{x;} are independent— (M,, — u with probability one).
PROOF: See ”Strong Law of Large Numbers” handout.

4. {xz;} have finite correlation length:
K.(i,7) =0if |i — j| > M for some M < oo
— (M,, — p in probability). PROOF: Exam #2, Fall 1998.

5. {x;} has "M L5 K (i,n) = 0.

n—aoo n
- L.I.M.
— (My, — p in mean square): "M, = p.

PROOF: Problem Set #8 (adapted to a nonzero mean p).

6. {z;} asymptotically uncorrelated: “'" K (n)=0.

[n|—o0 0%
— (M,, — 1 in mean square): iig M, = p.

PROOF: Stark and Woods p. 449 (cont.-time version).
Makes sense: group into sum of uncorrelated sums of RVs.



EECS 501 APPLICATIONS OF ERGODICITY  Fall 2001

GIVEN: Observations of continuous-time RP {x(t),t > 0},
where x(t) fulfills any of the ergodicity conditions overleaf.

1. Use + fo s)ds to estimate p = E[z(t)].
Polhng (see Problem Set #5). Now assume WLOG p = 0.

2. Use 1 fo s)ds to estimate o2 2 = Elx 2(t)]. Need
E [xQ(t)], E [:c4(t)} < 0o (use Gaussian moment factoring).

3. Spectral estimation using the Periodogram: Note
X(w) = [z(t)e ¥ dt — E[X (w1)X*(w2)] = Sz(w1)d(wr —w2).
Suggests estimating S, (w) by estimating E|[| X (w)|?] using:

DEF: Periodogram= P = 7| fOT x(t)e™I¥tdt|* (note units).

THM: P is asymptotically unbiased estimator of S, (w).

1. B E[+ fOT t)e Iwtdt fOT s)e?¥sds]. Simplify:
2. E[P|= % fo fo +(t — 5)e™7*(t=9)dt ds (looks familiar).
3. Change variables: t,s > 7=t —s,z2=t+s:|J| =2.
1 B[P =L [T drRy(r)e—der [27T &

E|[P] :f_T R.(7)e J“”(l |T|)d7‘.
5. Now take '™ E[P] = ,ﬁij\fof Ry(T)e™ 79T (1 — |T|)d7‘

= [ Ru( e—JWdT = S, (w )prov1ded |L|IM R, (1) = 0.

6. Perlodogram is not consistent estimator: 0% ~ S2(w).

op ~ E[P] regardless of data length! So L& P #5:(w).
7. See Stark and Woods p. 472 and p. 494

EXAMPLE OF NON-ERGODICITY
1. Begin by flipping coin A with Pr|heads] = P = 0.5.
2a. Heads—use coin B with P = 0.7 —Bernoulli process.

2b. Tails—use coin C with P = 0.8 —Bernoulli process.
3. M,, —0.7 or 0.8, but p = 0.75 for this random process!




EECS 501 STRONG LAW OF LARGE NUMBERS Fall 2001

THM: Let {z;,i =1,2...} be a sequence of iidrvs
with finite mean p = E [a:z] and finite variance o2 .
M, =+ Z@ | T; converges with probability one to L

> O

PROOF: Thm. 3 from ”Convergence of RVs” handout:

I Pr{|M, — u| > €] < oo then M,, — p with prob 1.

This followed from the Borel-Cantell: Lemma.
Can we use Chebyschev inequality directly, as before?

2 2 2
Pri|My, —p|l>€ < M =1% but 3> 1 o0

n=1 n

Change variables from n to m = [\/n] . [3.6] = 3)

(e.g
and z; to ¥; = x; — i, so that E[Z;] = 0:

n ~ n m—l—l ~
D izl T = Zz L Ti 2 <T£L2+1 Li-
EX:x1+... 2097 = (5131 + .. .3325) + (3326 —I-ZC‘27); 5= [\/ 27]

m? < n — ‘Mn| < |Myp2| + #‘ Z?:m2+1 Til.

2

On 9
Pr(|M,2| > €] < —p= =

2 2
O o0 1 _ oy n” |
butnow62§m1 7 = -5 < ool

So M,,> — 0 with probability one.

(n—m?)o? (2m+1)o2

Prioz] Y me g Bil > €] < St < S
since m? = [y/n]? <n < ([Vn] +1)? =m? + (2m + 1).

00 2m+1)o; 02 2 ai
Butzm:1%<zm 1 :%€—2<OO

m22

0 =3 > 1 o & — 0 with probability one.

From the bound in #4, M, — 0 with probability one.



EECS 501 Fall 2001
POISSON RANDOM SAMPLING OF SIGNALS

THM: Let z(t) be deterministic with E = [ z?(t)dt < oco.
Sample z(t) at the arrival times t,, of a Poisson process.
Then X (w) = + Y z(t,)e I« is an unbiased, weakly
consistent (as A — 00) estimator of X (w) = [ x(t)e 7« dt.

la. p(t) =Poisson counting process with avg. arrival rate .
1b. z(t) = ) 6(t —t,,) where t,, are Poisson arrival times.

2. Then p(t) — |Differentiator d/dt| — 2(t)
3. Also note X (w) = [ z(t)e” J“’tz(t)dt

4. E [d—ﬂ = LE[p(t)] = L(At) = A
5. E[X(w)] [z(t)e ME[ Wl gt = X (w).
Thus X (w) is an unbiased estimator of X (w).

6. Let Z(t) = 2(t) — X and p(t) = p(t) — A\t; both 0-mean.
7. K.(t,5) = E5()3(s)] = B | 250 25
= 20K (t,s) = ZLAMINIt, s] = \5(t — s).

ot
8. o X(w) = ff .(t,s)dtds
& [ [z@)z(s)N6(t — s)dtds = £.
9. fij\fo aé(w) =0 — X(w) is a consistent estimator of X (w).
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