
EECS 501 RESULTS SUMMARY: ERGODICITY Fall 2001

ISSUE: Let {xi, i = 1, 2 . . .} be a sequence of id rvs.
Does the sample mean Mn = 1

n

∑n
i=1 xi converge to

the ensemble mean E[xi] = µ, and in what sense?
”id”=”identically distributed”; assume E[xi], σ2

xi
< ∞.

1. Weak Law of Large Numbers:
{xi} are independent→ (Mn → µ in probability).
PROOF: Lecture in Oct.; ”Convergence of RVs” handout.
Equivalent to: ”Mn is a weakly consistent estimator of µ.”

2. Mean Ergodic Theorem:
{xi} are independent→ (Mn → µ in mean square):
PROOF: ”Convergence of RVs” handout. L.I.M.

n→∞ Mn = µ.

3. Strong Law of Large Numbers:
{xi} are independent→ (Mn → µ with probability one).
PROOF: See ”Strong Law of Large Numbers” handout.

4. {xi} have finite correlation length:
Kx(i, j) = 0 if |i− j| > M for some M < ∞
→ (Mn → µ in probability). PROOF: Exam #2, Fall 1998.

5. {xi} has LIM
n→∞

1
n

∑n
i=1 Kx(i, n) = 0.

→ (Mn → µ in mean square): L.I.M.
n→∞ Mn = µ.

PROOF: Problem Set #8 (adapted to a nonzero mean µ).

6. {xi} asymptotically uncorrelated: LIM
|n|→∞Kx(n) = 0.

→ (Mn → µ in mean square): L.I.M.
n→∞ Mn = µ.

PROOF: Stark and Woods p. 449 (cont.-time version).
Makes sense: group into sum of uncorrelated sums of RVs.



EECS 501 APPLICATIONS OF ERGODICITY Fall 2001

GIVEN: Observations of continuous-time RP {x(t), t > 0},
where x(t) fulfills any of the ergodicity conditions overleaf.

1. Use 1
t

∫ t

0
x(s)ds to estimate µ = E[x(t)].

Polling (see Problem Set #5). Now assume WLOG µ = 0.

2. Use 1
t

∫ t

0
x2(s)ds to estimate σ2

x(t) = E[x2(t)]. Need
E[x2(t)], E[x4(t)] < ∞ (use Gaussian moment factoring).

3. Spectral estimation using the Periodogram: Note
X(ω) =

∫
x(t)e−jωtdt → E[X(ω1)X∗(ω2)] = Sx(ω1)δ(ω1−ω2).

Suggests estimating Sx(ω) by estimating E[|X(ω)|2] using:
DEF: Periodogram= P = 1

T |
∫ T

0
x(t)e−jωtdt|2 (note units).

THM: P is asymptotically unbiased estimator of Sx(ω).
1. E[P ] = E[ 1

T

∫ T

0
x(t)e−jωtdt

∫ T

0
x(s)ejωsds]. Simplify:

2. E[P ] = 1
T

∫ T

0

∫ T

0
Rx(t− s)e−jω(t−s)dt ds (looks familiar).

3. Change variables: t, s → τ = t− s, z = t + s : |J | = 2.

4. E[P ] = 1
T

∫ T

−T
dτRx(τ)e−jωτ

∫ 2T−|τ |
|τ |

dz
2

E[P ] =
∫ T

−T
Rx(τ)e−jωτ (1− |τ |

T )dτ .

5. Now take LIM
T→∞E[P ] = LIM

T→∞
∫ T

−T
Rx(τ)e−jωτ (1− |τ |

T )dτ

=
∫∞
−∞Rx(τ)e−jωτdτ = Sx(ω) provided LIM

|τ |→∞Rx(τ) = 0.
6. Periodogram is not consistent estimator: σ2

P ≈ S2
x(ω).

σP ≈ E[P ] regardless of data length! So LIM
T→∞P 6= Sx(ω).

7. See Stark and Woods p. 472 and p. 494.

EXAMPLE OF NON-ERGODICITY
1. Begin by flipping coin A with Pr[heads] = P = 0.5.

2a. Heads→use coin B with P = 0.7 →Bernoulli process.
2b. Tails→use coin C with P = 0.8 →Bernoulli process.
3. Mn →0.7 or 0.8, but µ = 0.75 for this random process!



EECS 501 STRONG LAW OF LARGE NUMBERS Fall 2001

THM: Let {xi, i = 1, 2 . . .} be a sequence of iidrvs
with finite mean µ = E[xi] and finite variance σ2

xi
.

Mn = 1
n

∑n
i=1 xi converges with probability one to µ.

PROOF: Thm. 3 from ”Convergence of RVs” handout:
1. If

∑∞
n=1 Pr[|Mn− µ| > ε] < ∞ then Mn → µ with prob 1.

This followed from the Borel-Cantelli Lemma.

Q. Can we use Chebyschev inequality directly, as before?

A. Pr[|Mn − µ| > ε] <
σ2

Mn

ε2 = 1
n

σ2
x

ε2 but σ2
x

ε2

∑∞
n=1

1
n →∞.

2. Change variables from n to m = [
√

n] (e.g., [3.6] = 3)
and xi to x̃i = xi − µ, so that E[x̃i] = 0:

3.
∑n

i=1 x̃i =
∑m2

i=1 x̃i +
∑n<(m+1)2

i=m2+1 x̃i.
EX: x1 + . . . x27 = (x1 + . . . x25)+(x26 +x27); 5 = [

√
27]

4. m2 ≤ n → |Mn| ≤ |Mm2 |+ 1
m2 |

∑n
i=m2+1 x̃i|.

5. Pr[|Mm2 | > ε] <
σ2

M
m2

ε2 = 1
m2

σ2
x

ε2 as above,

but now σ2
x

ε2

∑∞
m=1

1
m2 = σ2

x

ε2
π2

6 < ∞!

So Mm2 → 0 with probability one.

6. Pr[ 1
m2 |

∑n
i=m2+1 x̃i| > ε] <

(n−m2)σ2
x

m4ε2 <
(2m+1)σ2

x

m4ε2

since m2 = [
√

n]2 ≤ n < ([
√

n] + 1)2 = m2 + (2m + 1).

7. But
∑∞

m=1
(2m+1)σ2

x

m4ε2 <
∑∞

m=1
σ2

x

m2ε2 = π2

6
σ2

x

ε2 < ∞.

So 1
m2

∑n
i=m2+1 x̃i → 0 with probability one.

8. From the bound in #4, Mn → 0 with probability one.



EECS 501 Fall 2001
POISSON RANDOM SAMPLING OF SIGNALS

THM: Let x(t) be deterministic with E =
∫

x2(t)dt < ∞.
Sample x(t) at the arrival times tn of a Poisson process.
Then X̂(ω) = 1

λ

∑
x(tn)e−jωtn is an unbiased, weakly

consistent (as λ →∞) estimator of X(ω) =
∫

x(t)e−jωtdt.

1a. p(t) =Poisson counting process with avg. arrival rate λ.
1b. z(t) =

∑
δ(t− tn) where tn are Poisson arrival times.

2. Then p(t) → |Differentiator d/dt| → z(t)

3. Also note X̂(ω) =
∫

x(t)e−jωt z(t)
λ dt.

4. E[z(t)] = E
[

dp
dt

]
= d

dtE[p(t)] = d
dt (λt) = λ.

5. E[X̂(ω)] =
∫

x(t)e−jωt E[z(t)]
λ dt = X(ω).

Thus X̂(ω) is an unbiased estimator of X(ω).

6. Let z̃(t) = z(t)− λ and p̃(t) = p(t)− λt; both 0-mean.

7. Kz(t, s) = E[z̃(t)z̃(s)] = E
[

∂p̃(t)
∂t

∂p̃(s)
∂s

]

= ∂
∂t

∂
∂sKp(t, s) = ∂

∂t
∂
∂sλMIN [t, s] = λδ(t− s).

8. σ2
X̂(ω)

= 1
λ2

∫ ∫
x(t)x(s)Kz(t, s)dt ds

= 1
λ2

∫ ∫
x(t)x(s)λδ(t− s)dt ds = E

λ .

9. LIM
λ→∞σ2

X̂(ω)
= 0 → X̂(ω) is a consistent estimator of X(ω).
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