Model:	A known model of system or process with $unknown$ parameter a .
Data:	An observation R of a <i>random</i> variable r whose pdf depends on a .
	Model $\rightarrow f_{r a}(R A)$: If knew $a = A$, would know pdf of observation r.
Goal:	Estimate a from R and conditional pdf $f_{r a}(R A)$: Compute $\hat{a}(R)$.
Example:	Flip coin 10 times. Data: $\#$ heads in 10 independent flips.
Model:	Binomial pmf for r . Unknown parameter: $a=Pr[heads]$.

 Non-Bayesian: a is an unknown constant (do not know f_a(A)).
 Given: f_{r|a}(R|A) from model; observation (data) R of rv r; nothing more. Advantage: Need very little; no (possibly wrong) prior information.
 Soln: Maximum Likelihood Estimator: max likelihood of what happened:r=R.
 MLE: â_{MLE}(R) = ^{argmax}_A [f_{r|a}(R|A)]. Compute: ∂∂/∂A [log f_{r|a}(R|A)] = 0.

BLUE: Best (minimum variance) Linear Unbiased Estimator of constant x from y = Hx + v, E[v] = 0 is $\hat{x}(Y) = (H'H)^{-1}H'Y$. **Proof:** p. 290.

2. **Bayesian:** a is *itself* random with known a priori pdf $f_a(A)$.

Given: $f_{r|a}(R|A)$ from model; $f_a(A) = a \ priori$ info; observation R of r. Advantage: Incorporate $a \ priori$ in estimate, but this better be right! **Soln:** min E[c(e)] where $e = a - \hat{a}(r) = \text{error and } c(\cdot) = \text{cost} = \text{MEP or LSE:}$

2a. MEP: Min Error Prob: $c(e) = \begin{cases} 0 & \text{if } |e| < \epsilon; \\ 1 & \text{if } |e| > \epsilon. \end{cases}$ "close only counts in horseshoes" $E[c(e)] = 1 - \int_{-\infty}^{\infty} dR \int_{\hat{a}(R) - \epsilon}^{\hat{a}(R) + \epsilon} dA f_{r,a}(R, A) = 1 - 2\epsilon \int_{-\infty}^{\infty} f_{r,a}(R, \hat{a}(R)) dR.$ This is minimized when $f_{r,a}(R, \hat{a}(R))$ maximized for each R.

MAP: Max A Posteriori: $\hat{a}_{MAP}(R) = \frac{argmax}{A} [f_{r|a}(R|A)f_a(A)]$ (compare MLE). **Compute:** $\frac{\partial}{\partial A} [\log f_{r|a}(R|A) + \log f_a(A)] = 0$. MEP criterion \rightarrow MAP solution.

2b. LSE: Least Squares Estimation criterion: $c(e) = e^2$. Penalize big errors. LSE: $\hat{a}_{LS}(R) = E[a|r=R] = \frac{\int Af_{r|a}(R|A)f_a(A)dA}{\int f_{r|a}(R|A')f_a(A')dA'}$ Denominator just $f_r(R)$: no effect on argmax of A

Proof: Page 298. Moment of inertia minimized around center of mass.

Bias: Let *a* be an unknown constant A_{act} so that $f_a(A) = \delta(A - A_{act})$. **DEF:** $\hat{a}(R)$ is unbiased if $E[\hat{a}(r)] = A_{act} \leftrightarrow E[e] = 0$. How to compute: $E[\hat{a}(r)] = \int \int \hat{a}(R) f_{r|a}(R|A) \delta(A - A_{act}) dR dA = \int \hat{a}(R) f_{r|a}(R|A_{act}) dR$. **MSE:** $\hat{a}(R)$ unbiased $\rightarrow E[(\hat{a}(r) - A_{act})^2] = \sigma_{\hat{a}(r)}^2 \rightarrow \text{MSE}$ =variance of $\hat{a}(R)$.

Given: Model: Goal:	Flip coin with Pr[heads]=a. Data: #heads in 10 independent flips. pmf $p_{r a}(R A) = \binom{10}{R} A^R (1-A)^{10-R}, R = 0, 110; 0 \le A \le 1$. Estimate a=Pr[heads] from r=#heads in 10 flips and a priori $f_a(A)$.
MLE: \rightarrow	$\frac{\partial}{\partial A} \left[\log \begin{pmatrix} 10 \\ R \end{pmatrix} + R \log A + (10 - R) \log(1 - A) \right] = \frac{R}{A} - \frac{10 - R}{1 - A} = 0$ $\hat{a}_{MLE}(R) = \frac{R}{10}.$ Easy to interpret! Note: No <i>a priori</i> pdf for <i>a</i> .
Bias: MSE:	$E[\hat{a}_{MLE}(r)] = E[\frac{r}{10}] = \frac{10A_{act}}{10} = A_{act} \to \hat{a}_{MLE}(r) \text{ unbiased.}$ $E[(\hat{a}_{MLE}(r) - A_{act})^2] = \sigma_{\frac{r}{10}}^2 \text{ (since unbiased)} = \frac{10A_{act}(1 - A_{act})}{100}.$
EX2: MAP: Have:	Now suppose have $f_a(A) = 1$ for $0 \le A \le 1$ (Bayesian problem). log $f_a(A) = 0 \rightarrow$ same algebra $\rightarrow \hat{a}_{MAP}(R) = \hat{a}_{MLE}(R) = \frac{R}{10}$. Uniform <i>a priori</i> pdf $a \sim N(0, \sigma^2 \rightarrow \infty) \rightarrow \hat{a}_{MAP}(R) = \hat{a}_{MLE}(R)$.
EX3: MAP:	Now suppose have $f_a(A) = 2A$ for $0 \le A \le 1$ (Bayesian problem). $\frac{\partial}{\partial A} [\log {\binom{10}{R}} + R \log A + (10 - R) \log(1 - A) + \log 2 + \log A]$ $= \frac{R}{A} - \frac{10 - R}{1 - A} + \frac{1}{A} = 0 \rightarrow \hat{a}_{MAP}(R) = \frac{R+1}{11}$. A slanted estimator!
EX4:	Now suppose have $f_a(A) = 1$ for $0 \le A \le 1$ (Bayesian problem).
LSE:	$\hat{a}_{LS}(R) = E[a r=R] = \frac{\int_0^1 A\binom{10}{R} A^R (1-A)^{10-R} dA}{\int_0^1 \binom{10}{R} A^R (1-A)^{10-R} dA} = \frac{R+1}{12}.$
Ref: Note:	Schaum's Outline Math. Handbook, (15.24) on p. 95. $\hat{a}_{LS}(5) = \frac{1}{2}$. Even with a uniform <i>a priori</i> distribution for <i>a</i> , \hat{a}_{LS} still slanted!
LLSE: Soln: &	$ \min E[(a - \hat{a}(r))^2] \text{ such that } \hat{a}(R) = cR + b \text{ for some constants } b, c. \\ \frac{\partial}{\partial c} E[(a - cr - b)^2] = 0 \rightarrow \hat{a}_{LLSE}(R) = E[a] + \frac{\lambda_{ar}}{\sigma_r^2}(R - E[r]). \\ \frac{\partial}{\partial b} E[(a - cr - b)^2] = 0. \text{ This is Linear Least Squares Estimator.} $
LSE:	$r, a \text{ jointly Gaussian} \rightarrow \begin{bmatrix} r \\ a \end{bmatrix} \sim N\left(\begin{bmatrix} E[r] \\ E[a] \end{bmatrix}, \begin{bmatrix} \sigma_r^2 & \lambda_{ra} \\ \lambda_{ra} & \sigma_a^2 \end{bmatrix} \right)$
$ ightarrow \hat{a}$ Fact:	$E_{LS}(R) = E[a r=R] = E[a] + \frac{\lambda_{ar}}{\sigma_r^2}(R-E[r]) = \hat{a}_{LLSE}(R)!$ Two very different problems have the same solution!
Norm:	Normalized form: $(\hat{a}(R) - E[a])/\sigma_a = \rho_{ar}(R - E[r])/\sigma_r.$
MSE:	$E[(a - \hat{a}(r))^2] = \sigma_a^2 - \frac{\lambda_{ar}^2}{\sigma_r^2} \to E\left[\left(\frac{\hat{a}(r) - a}{\sigma_a}\right)^2\right] = 1 - \rho_{ar}^2.$