
EECS 501 ESTIMATION: MLE, MAP, LS Fall 2001

Model: A known model of system or process with unknown parameter a.
Data: An observation R of a random variable r whose pdf depends on a.

Model→ fr|a(R|A): If knew a = A, would know pdf of observation r.
Goal: Estimate a from R and conditional pdf fr|a(R|A): Compute â(R).

Example: Flip coin 10 times. Data: #heads in 10 independent flips.
Model: Binomial pmf for r. Unknown parameter: a=Pr[heads].

1. Non-Bayesian: a is an unknown constant (do not know fa(A)).
Given: fr|a(R|A) from model; observation (data) R of rv r; nothing more.

Advantage: Need very little; no (possibly wrong) prior information.
Soln: Maximum Likelihood Estimator: max likelihood of what happened:r=R.
MLE: âMLE(R) = argmax

A [fr|a(R|A)]. Compute: ∂
∂A [log fr|a(R|A)] = 0.

BLUE: Best (minimum variance) Linear Unbiased Estimator of constant x
from y = Hx + v, E[v] = 0 is x̂(Y ) = (H ′H)−1H ′Y . Proof: p. 290.

2. Bayesian: a is itself random with known a priori pdf fa(A).
Given: fr|a(R|A) from model; fa(A)=a priori info; observation R of r.

Advantage: Incorporate a priori in estimate, but this better be right!
Soln: min E[c(e)] where e = a− â(r)=error and c(·)=cost=MEP or LSE:

2a. MEP: Min Error Prob: c(e) =
{

0 if |e| < ε;
1 if |e| > ε.

“close only counts in horseshoes”
“amiss is as good as a mile”

E[c(e)] = 1− ∫∞
−∞ dR

∫ â(R)+ε

â(R)−ε
dAfr,a(R, A) = 1− 2ε

∫∞
−∞ fr,a(R, â(R))dR.

This is minimized when fr,a(R, â(R)) maximized for each R.

MAP: Max A Posteriori: âMAP (R) = argmax
A [fr|a(R|A)fa(A)] (compare MLE).

Compute: ∂
∂A [log fr|a(R|A) + log fa(A)] = 0. MEP criterion→MAP solution.

2b. LSE: Least Squares Estimation criterion: c(e) = e2. Penalize big errors.

LSE: âLS(R) = E[a|r = R] =
∫

Afr|a(R|A)fa(A)dA∫
fr|a(R|A′)fa(A′)dA′

Denominator just fr(R) :
no effect on argmax of A

Proof: Page 298. Moment of inertia minimized around center of mass.

Bias: Let a be an unknown constant Aact so that fa(A) = δ(A−Aact).
DEF: â(R) is unbiased if E[â(r)] = Aact ↔ E[e] = 0. How to compute:

E[â(r)] =
∫ ∫

â(R)fr|a(R|A)δ(A−Aact)dR dA =
∫

â(R)fr|a(R|Aact)dR.
MSE: â(R) unbiased→ E[(â(r)−Aact)2] = σ2

â(r) →MSE =variance of â(R).



EECS 501 ESTIMATION EXAMPLES Fall 2001

Given: Flip coin with Pr[heads]=a. Data: #heads in 10 independent flips.
Model: pmf pr|a(R|A) =

(
10
R

)
AR(1−A)10−R, R = 0, 1 . . . 10; 0 ≤ A ≤ 1.

Goal: Estimate a=Pr[heads] from r=#heads in 10 flips and a priori fa(A).

MLE: ∂
∂A [log

(
10
R

)
+ R log A + (10−R) log(1−A)] = R

A − 10−R
1−A = 0

→ âMLE(R) = R
10 . Easy to interpret! Note: No a priori pdf for a.

Bias: E[âMLE(r)] = E[ r
10 ] = 10Aact

10 = Aact → âMLE(r) unbiased.
MSE: E[(âMLE(r)−Aact)2] = σ2

r
10

(since unbiased) = 10Aact(1−Aact)
100 .

EX2: Now suppose have fa(A) = 1 for 0 ≤ A ≤ 1 (Bayesian problem).
MAP: log fa(A) = 0 →same algebra→ âMAP (R) = âMLE(R) = R

10 .
Have: Uniform a priori pdf a ∼ N(0, σ2 →∞) → âMAP (R) = âMLE(R).

EX3: Now suppose have fa(A) = 2A for 0 ≤ A ≤ 1 (Bayesian problem).
MAP: ∂

∂A [log
(

10
R

)
+ R log A + (10−R) log(1−A) + log 2 + log A]

= R
A − 10−R

1−A + 1
A = 0 → âMAP (R) = R+1

11 . A slanted estimator!

EX4: Now suppose have fa(A) = 1 for 0 ≤ A ≤ 1 (Bayesian problem).

LSE: âLS(R) = E[a|r = R] =
∫ 1

0
A( 10

R )AR(1−A)10−RdA∫ 1

0
( 10

R )AR(1−A)10−RdA
= R+1

12 .

Ref: Schaum’s Outline Math. Handbook, (15.24) on p. 95. âLS(5) = 1
2 .

Note: Even with a uniform a priori distribution for a, âLS still slanted!

LLSE: min E[(a− â(r))2] such that â(R) = cR + b for some constants b, c.
Soln: ∂

∂cE[(a− cr − b)2] = 0 → âLLSE(R) = E[a] + λar

σ2
r

(R− E[r]).

& ∂
∂bE[(a− cr − b)2] = 0. This is Linear Least Squares Estimator.

LSE: r, a jointly Gaussian→
[

r
a

]
∼ N

([
E[r]
E[a]

]
,

[
σ2

r λra

λra σ2
a

])

→ âLS(R) = E[a|r = R] = E[a] + λar

σ2
r

(R− E[r]) = âLLSE(R)!
Fact: Two very different problems have the same solution!

Norm: Normalized form: (â(R)− E[a])/σa = ρar(R− E[r])/σr.

MSE: E[(a− â(r))2] = σ2
a − λ2

ar

σ2
r
→ E

[(
â(r)−a

σa

)2
]

= 1− ρ2
ar.


