Given: $f_{x, y}(X, Y)=6 e^{-(3 X+2 Y)}$ for $X, Y \geq 0 ; 0$ otherwise (2-D exponential).
Goal: Compute $f_{z, w}(Z, W)$ for transformation $z=x+y$ and $w=x /(x+y)$.

1. Compute the inverse transformation of the given one:
$\left\{\begin{array}{c}z=z(x, y)=x+y \\ w=w(x, y)=x /(x+y)\end{array}\right\} \rightarrow$ Inverse $\left\{\begin{array}{c}x=x(z, w)=z w \\ y=y(z, w)=z(1-w)\end{array}\right\}$
since $w=x /(x+y)=x / z \rightarrow x=z w$ and $y=z-x=z-z w=z(1-w)$.
2. Compute the Jacobian=determinant of the Jacobian matrix J:
$|J|=\left|\operatorname{det}\left[\begin{array}{cc}\frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y}\end{array}\right]\right|=\left|\operatorname{det}\left[\begin{array}{cc}1 & 1 \\ \frac{y}{(x+y)^{2}} & \frac{-x}{(x+y)^{2}}\end{array}\right]\right|=\left|-\frac{1}{x+y}\right|=\frac{1}{x+y}$.
since $x, y \geq 0$ for this particular $f_{x, y}(X, Y)$.
3. Substitute inverse transformation into $f_{x, y}(X, Y) /|J(X, Y)|$:
$f_{z, w}(Z, W)=\left.\frac{f_{x, y}(X, Y)}{|J(X, Y)|}\right|_{X=x(Z, W), Y=y(Z, W)}$ as defined above
$=\frac{f_{x, y}(Z W, Z(1-W))}{1 /(Z W+Z(1-W))}=6 Z e^{-(3 Z W+2 Z(1-W))}=6 Z e^{-Z(W+2)}$
for $Z \geq 0$ and $0 \leq W \leq 1$ since $x, y \geq 0 \rightarrow 0 \leq w \leq 1$.
4. If desired, compute marginal pdfs for z and/or w :

$$
\begin{aligned}
& f_{z}(Z)=6 Z e^{-2 Z} \int_{0}^{1} e^{-Z W} d W=6\left(e^{-2 Z}-e^{-3 Z}\right) \text { for } Z \geq 0 . \\
& f_{w}(W)=\int_{0}^{\infty} 6 Z e^{-Z(W+2)} d Z=\frac{6}{(W+2)^{2}} \text { for } 0 \leq W \leq 1 .
\end{aligned}
$$

Check: Both marginal pdfs integrate to 1 . Compare to exponential $f_{x}(X), f_{y}(Y)$.
Given: $f_{x, y}(X, Y)=9 e^{-(3 X+3 Y)}$ for $X, Y \geq 0 ; 0$ otherwise (2-D exponential). Goal: Compute $f_{z, w}(Z, W)$ for transformation $z=x+y$ and $w=x /(x+y)$.

Now get $f_{z, w}(Z, W)=9 Z e^{-3 Z}$ for $Z \geq 0$ and $0 \leq W \leq 1$.
This is a $2^{\text {nd }}$-order Erlang or Gamma pdf in z; a uniform pdf in w.
Note that z and w are now independent random variables, unlike before.

