DEF: Bernoulli random process $x(n)$ is a discrete-time 1-sided iidrp with: $x(n)=\left\{\begin{array}{lll}1 & \text { success or arrival with prob. } p \\ 0 & \text { failure or nonarrival with } 1-p\end{array} \quad p_{x(n)}(X)= \begin{cases}p & \text { for } X=1 \\ 1-p & \text { for } X=0\end{cases}\right.$
Note: Kolmogorov: $p_{x\left(i_{1}\right) \ldots x\left(i_{N}\right)}\left(X_{1} \ldots X_{N}\right)=\prod_{i=1}^{N} p_{x(n)}\left(X_{i}\right)$. Bernoulli rvs.

Question	pmf name	pmf formula	$\mathrm{E}[\mathrm{k}]$	$\sigma_{\text {k }}^{2}$
$\operatorname{Pr}\left[{ }^{\text {k successes }}\right.$ in N trials $]$	Binomial	$\binom{N}{k} p^{k}(1-p)^{N-k}$	$N p$	$N p(1-p)$
$\left[\begin{array}{l}\# \text { trials until } \\ \text { next success }\end{array}\right]$	Geometric	$(1-p)^{k-1} p, k \geq 1$	$1 / p$	$(1-p) / p^{2}$
$\left[\begin{array}{c}\text { \#trials until } \\ \text { rth } \\ \text { success }\end{array}\right]$	Pascal	$\binom{k-1}{r-1} p^{r}(1-p)^{k-r}$	r / p	$r(1-p) / p^{2}$

Note: "Until" means "up to and including" in the above. pmf ranges omitted. Binomial: $\operatorname{Pr}[k$ successes in any closed interval of length $N-1$ (N points) $]$ Binomial: =sum of N independent Bernoulli rvs.: z-xform $=((1-p)+p z)^{N}$.
Geometric: $1^{\text {st }}$-order interarrival time $=\#$ trials from last success to next success.
Geometric: Let $\mathrm{A}=$ next success on $k^{\text {th }}$ trial and $B_{j}=$ no successes on last j trials.
Memoryless: $\operatorname{Pr}\left[A \mid B_{j}\right]=\frac{\operatorname{Pr}\left[A B_{j}\right]}{\operatorname{Pr}\left[B_{j}\right]}=\frac{\operatorname{Pr}\left[B_{k+j-1}\right] p}{\operatorname{Pr}\left[B_{j}\right]}=\frac{(1-p)^{k+j-1} p}{(1-p)^{j}}=\frac{(1-p)^{k-1} p}{k=1, \ldots \ldots}=\operatorname{Pr}[A]$.
Pascal: $r^{\text {th }}$-order interarrival time $=$ sum of r independent Geometric rvs.
Pascal: $\operatorname{Pr}[r-1$ successes in $k-1$ trials $] \operatorname{Pr}\left[r^{t h}\right.$ success in $k^{t h}$ trial $] . k \geq r$.
DEF: Poisson process: continuous-time with arrivals at points in time.

1. $\operatorname{Pr}\left[\right.$ arrival in $\left.\left[t_{o}, t_{o}+\delta t\right]\right]=\lambda \delta t$ as $\delta t \rightarrow 0 . \lambda=$ average arrival rate.
2. Events defined on non-overlapping intervals are independent.
3. Continuous-time limit of Bernoulli with $p=\lambda \delta t$ and $N=T / \delta t$.

Question	pdf name	pdf formula	$\mathbf{E}[\mathbf{t}]$	$\sigma_{\mathbf{t}}^{2}$
$P r\left[\begin{array}{c}\text { karrivals } \\ \text { int }\end{array}\right.$	Poisson pmf	$(\lambda T)^{k} e^{-\lambda T} / k!$	λT	λT
$\left[\begin{array}{ccc}\text { timet until } \\ \text { next arrival }\end{array}\right]$	Exponential	$\lambda e^{-\lambda t}, t \geq 0$	$1 / \lambda$	$1 / \lambda^{2}$
$\left[\begin{array}{c}\text { timet tuntil } \\ \text { rth arrival }\end{array}\right]$	Erlang	$\lambda^{r} t^{r-1} e^{-\lambda t} /(r-1)!$	r / λ	r / λ^{2}

Poisson: $\binom{N}{k} p^{k}(1-p)^{N-k} \approx \frac{N^{k}}{k!} p^{k}(1-p)^{N} \rightarrow(T / \delta t)^{k}(\lambda \delta t)^{k}(1-\lambda \delta t)^{T / \delta t} / k!$.
Exponen: $(1-p)^{k-1} p \rightarrow(1-\lambda \delta t)^{t / \delta t}(\lambda \delta t) \rightarrow \lambda e^{-\lambda t} \delta t$ since $\lim _{x \rightarrow 0}(1+a x)^{b / x}=e^{a b}$.
Exponen: Memoryless, like Geometric pmf (similar derivation to that above).
Erlang: $r^{t h}$-order interarrival time $=$ sum of r independent Exponential rvs.
Counting: Poisson counting process $N(t)=\#$ arrivals in Poisson process in $[0, t]$.
Refs: pp. 377-384 and 36-42; also see A.W. Drake text on closed reserve.
$\sum: x_{1}, x_{2}$ independent Poisson processes with avg. arrival rates λ_{1}, λ_{2}.
DEF: New $\mathrm{rp} x_{3}$ where an arrival in either x_{1} or x_{2} is an arrival in x_{3}.
Then: x_{3} is also a Poisson process with avg. arrival rate $\lambda_{3}=\lambda_{1}+\lambda_{2}$, since: $\operatorname{Pr}\left[\right.$ arrival in $\left.\left[t_{o}, t_{o}+\delta t\right]\right]=\lambda_{1} \delta t+\lambda_{2} \delta t-\lambda_{1} \lambda_{2}(\delta t)^{2} \rightarrow\left(\lambda_{1}+\lambda_{2}\right) \delta t$, and events defined on non-overlapping intervals are still independent.

EX: $x_{1} \ldots x_{N}$ are iidrvs with exponential pdf $f_{x_{i}}(X)=\lambda e^{-\lambda X}, X \geq 0$. Then: $y=\min \left[x_{1} \ldots x_{N}\right]$ has exponential pdf $f_{y}(Y)=N \lambda e^{-N \lambda Y}, Y \geq 0$ since: y is $1^{\text {st }}$ arrival in superposition of N indpt Poisson processes.

$$
\begin{aligned}
& \text { EX: } 8 \text { light bulbs turned on at } t=0 \text {. Bulb lifetime is an exponential pdf. } \\
& \text { Q: Compute mean and variance of time } t \text { until the } 3^{\text {rd }} \text { bulb burns out. } \\
& \text { A: Bulb burnout=arrival in Poisson process (only until it burns out!). } \\
& \sum: \text { Sum of } n \text { independent Poisson processes (} n=\# \text { bulbs still on). } \\
& E[t]: E[t]=1 /(8 \lambda)+1 /(7 \lambda)+1 /(6 \lambda) . \quad \sigma_{t}^{2}=1 /(8 \lambda)^{2}+1 /(7 \lambda)^{2}+1 /(6 \lambda)^{2} .
\end{aligned}
$$

Q: In x_{3}, compute $\operatorname{Pr}\left[\right.$ next arrival comes from x_{1}, as opposed to x_{2}].
A1: $\operatorname{Pr}\left[\operatorname{arrival} x_{1} \mid \operatorname{arrival} x_{3}\right]=\frac{\operatorname{Pr}\left[\operatorname{arrival} x_{1} \& x_{3}\right]}{\operatorname{Pr}\left[\operatorname{arrival} x_{3}\right]}=\frac{\lambda_{1} \delta t}{\left(\lambda_{1}+\lambda_{2}\right) \delta t}=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}$.
A2: $t_{i}=$ time to next arrival in $x_{i} . f_{t_{i}}\left(T_{i}\right)=\lambda_{i} e^{-\lambda_{i} T_{i}}, T_{i} \geq 0, i=1,2$.
Want: $\operatorname{Pr}\left[t_{1}<t_{2}\right]=\int_{0}^{\infty} \int_{T_{1}}^{\infty} \lambda_{1} e^{-\lambda T_{1}} \lambda_{2} e^{-\lambda T_{2}} d T_{2} d T_{1}=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}$.
Note: $\operatorname{Pr}\left[7\right.$ of next 10 arrivals in x_{3} from $\left.x_{1}\right]=\binom{10}{7}\left(\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\right)^{7}\left(\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}\right)^{3}$.
Random x is a Poisson process with average arrival rate λ.
erasures At each arrival in x, flip a coin with $\operatorname{Pr}[$ heads $]=\mathrm{P}$.
If heads: Count the arrival in x as an arrival in a new process y.
If tails: Don't count arrival in x as an arrival in new process y.
Assume: Coin flips are independent, and flipping is independent of x.
Then: y is a Poisson process with average arrival rate λP.
EX: Defective Geiger counter only works with $\operatorname{Pr}[$ detect particle $]=\mathrm{P}$.
Radioactivity is well-modelled by Poisson process: arrivals=particles.
But: If coin flips not independent, y is not Poisson.
EX: If coin alternates heads and tails, not random erasures.
Then: Interarrival times for y are $2^{\text {nd }}$-order Erlang pdf!

