DEF: Bernoulli random process x(n) is a discrete-time 1-sided iidrp with: $x(n) = \begin{cases} 1 & \text{success or arrival with prob. } p \\ 0 & \text{failure or nonarrival with } 1-p \end{cases} p_{x(n)}(X) = \begin{cases} p & \text{for } X = 1 \\ 1-p & \text{for } X = 0 \end{cases}$ **Note:** Kolmogorov: $p_{x(i_1)...x(i_N)}(X_1...X_N) = \prod_{i=1}^N p_{x(n)}(X_i)$. Bernoulli rvs.

$\mathbf{Question}$	$\operatorname{pmf}\operatorname{name}$	pmf formula	$\mathbf{E}[\mathbf{k}]$	$\sigma_{\mathbf{k}}^{2}$
$Pr[{}^{ m ksuccesses}_{ m inNtrials}]$	Binomial	$\binom{N}{k} p^k (1-p)^{N-k}$	Np	Np(1-p)
$\begin{bmatrix} \# \text{trials until} \\ \text{next success} \end{bmatrix}$	Geometric	$(1-p)^{k-1}p, k \ge 1$	1/p	$(1-p)/p^2$
$\left[\begin{smallmatrix}\#\mathrm{trials} \mathrm{until}\\\mathrm{r^{th}} \mathrm{success}\end{smallmatrix} ight]$	Pascal	$\binom{k-1}{r-1} p^r (1-p)^{k-r}$	r/p	$r(1-p)/p^2$

Note: "Until" means "up to *and including*" in the above. pmf ranges omitted. Binomial: $\Pr[k \text{ successes in any } closed \text{ interval of length } N - 1 (N \text{ points})]$ Binomial: =sum of N independent Bernoulli rvs.: z-xform= $((1 - p) + pz)^N$.

Geometric: 1^{st} -order interarrival time=#trials from last success to next success. Geometric: Let A=next success on k^{th} trial and B_j =no successes on last j trials. Memoryless: $Pr[A|B_j] = \frac{Pr[AB_j]}{Pr[B_j]} = \frac{Pr[B_{k+j-1}]p}{Pr[B_j]} = \frac{(1-p)^{k+j-1}p}{(1-p)^j} = \frac{(1-p)^{k-1}p}{k=1,2...} = Pr[A].$

Pascal: r^{th} -order interarrival time=sum of r independent Geometric rvs. Pascal: $\Pr[r-1 \text{ successes in } k-1 \text{ trials}]\Pr[r^{th} \text{ success in } k^{th} \text{ trial}]$. $k \ge r$.

DEF: *Poisson* process: continuous-time with arrivals at points in time.

- 1. $Pr[\operatorname{arrival} \operatorname{in} [t_o, t_o + \delta t]] = \lambda \delta t$ as $\delta t \to 0$. $\lambda = average$ arrival rate.
- 2. Events defined on non-overlapping intervals are independent.
- 3. Continuous-time limit of Bernoulli with $p = \lambda \delta t$ and $N = T/\delta t$.

$\begin{array}{c} \mathbf{Question} \\ Pr[{}^{\mathrm{karrivals}}_{\mathrm{intimeT}}] \end{array}$	pdf name Poisson pmf	pdf formula $(\lambda T)^k e^{-\lambda T}/k!$	$\frac{\mathbf{E}[\mathbf{t}]}{\lambda T}$	$\sigma_{\mathbf{t}}^{2}$ λT
[time t until] [next arrival]	Exponential	$\lambda e^{-\lambda t}, t \ge 0$	$1/\lambda$	$1/\lambda^2$
[th arrival]	Erlang	$\lambda^r t^{r-1} e^{-\lambda t} / (r-1)!$	r/λ	r/λ^2

Poisson: $\binom{N}{k}p^k(1-p)^{N-k} \approx \frac{N^k}{k!}p^k(1-p)^N \to (T/\delta t)^k(\lambda \delta t)^k(1-\lambda \delta t)^{T/\delta t}/k!$. Exponen: $(1-p)^{k-1}p \to (1-\lambda \delta t)^{t/\delta t}(\lambda \delta t) \to \lambda e^{-\lambda t} \delta t$ since $\lim_{x\to 0} (1+ax)^{b/x} = e^{ab}$. Exponen: *Memoryless*, like Geometric pmf (similar derivation to that above). Erlang: r^{th} -order interarrival time=sum of r independent Exponential rvs. Counting: Poisson *counting* process N(t)=#arrivals in Poisson process in [0, t]. **Refs:** pp. 377-384 and 36-42; also see A.W. Drake text on closed reserve. $\sum : x_1, x_2 \text{ independent Poisson processes with avg. arrival rates } \lambda_1, \lambda_2.$ **DEF:** New rp x_3 where an arrival in *either* x_1 or x_2 is an arrival in x_3 . **Then:** x_3 is also a Poisson process with avg. arrival rate $\lambda_3 = \lambda_1 + \lambda_2$, **since:** $Pr[\operatorname{arrival in}[t_o, t_o + \delta t]] = \lambda_1 \delta t + \lambda_2 \delta t - \lambda_1 \lambda_2 (\delta t)^2 \rightarrow (\lambda_1 + \lambda_2) \delta t$, and events defined on non-overlapping intervals are still independent.

EX: $x_1 \dots x_N$ are iddrvs with exponential pdf $f_{x_i}(X) = \lambda e^{-\lambda X}, X \ge 0$. **Then:** $y = \min[x_1 \dots x_N]$ has exponential pdf $f_y(Y) = N\lambda e^{-N\lambda Y}, Y \ge 0$ **since:** y is 1^{st} arrival in superposition of N indpt Poisson processes.

EX: 8 light bulbs turned on at t = 0. Bulb lifetime is an exponential pdf.

Q: Compute mean and variance of time t until the 3^{rd} bulb burns out.

A: Bulb burnout=arrival in Poisson process (only until it burns out!).

 \sum : Sum of *n* independent Poisson processes (*n*=#bulbs still on).

 $E[t]: E[t] = 1/(8\lambda) + 1/(7\lambda) + 1/(6\lambda). \quad \sigma_t^2 = 1/(8\lambda)^2 + 1/(7\lambda)^2 + 1/(6\lambda)^2.$

Q: In x_3 , compute Pr[next arrival comes from x_1 , as opposed to x_2].

A1: $Pr[\operatorname{arrival} x_1 | \operatorname{arrival} x_3] = \frac{Pr[\operatorname{arrival} x_1 \& x_3]}{Pr[\operatorname{arrival} x_3]} = \frac{\lambda_1 \delta t}{(\lambda_1 + \lambda_2) \delta t} = \frac{\lambda_1}{\lambda_1 + \lambda_2}.$

A2: t_i =time to next arrival in x_i . $f_{t_i}(T_i) = \lambda_i e^{-\lambda_i T_i}, T_i \ge 0, i = 1, 2.$ **Want:** $Pr[t_1 < t_2] = \int_0^\infty \int_{T_1}^\infty \lambda_1 e^{-\lambda T_1} \lambda_2 e^{-\lambda T_2} dT_2 dT_1 = \frac{\lambda_1}{\lambda_1 + \lambda_2}.$

Note: Pr[7 of next 10 arrivals in x_3 from x_1]= $\binom{10}{7}(\frac{\lambda_1}{\lambda_1+\lambda_2})^7(\frac{\lambda_2}{\lambda_1+\lambda_2})^3$.

Random	x is a Poisson process with average arrival rate λ .
erasures	At each arrival in x , flip a coin with $\Pr[heads] = P$.
If heads:	Count the arrival in x as an arrival in a new process y .
If tails:	Don't count arrival in x as an arrival in new process y .
Assume:	Coin flips are independent, and flipping is independent of x .
Then:	y is a Poisson process with average arrival rate λP .
EX:	Defective Geiger counter only works with Pr[detect particle]=P.
	Radioactivity is well-modelled by Poisson process: arrivals=particles.
But:	If coin flips not independent, y is not Poisson.
EX.	If coin alternates hands and tails not random erasures

EX: If coin alternates heads and tails, not *random* erasures.

Then: Interarrival times for y are 2^{nd} -order Erlang pdf!