DEF: $\Omega=$ sample space $=$ set of all distinguishable outcomes of an experiment.
DEF: $\mathcal{A}=$ event space $=$ set of subsets of Ω such that \mathcal{A} is a σ-algebra.
DEF: An Algebra $=\mathcal{A}=$ a set of subsets of a set Ω such that:

1. $A \in \mathcal{A}$ and $B \in \mathcal{A} \rightarrow A \cup B \in \mathcal{A}$ and $A \cap B \in \mathcal{A}$;
2. $A \in \mathcal{A} \rightarrow A^{\prime}=\Omega-A \in \mathcal{A}$. Closed under \cup, \cap, complement in Ω.

DEF: A σ-algebra is an algebra closed under countable number of \cup, \cap.
NOTE: Empty set $=\phi$ and Ω are always members of any algebra \mathcal{A}, since $A \in \mathcal{A} \rightarrow A^{\prime} \in \mathcal{A} \rightarrow \phi=A \cap A^{\prime} \in \mathcal{A}$ and $\Omega=A \cup A^{\prime} \in \mathcal{A}$.
NOTE: $A \in \mathcal{A}$ and $B \in \mathcal{A} \rightarrow A \cup B \in \mathcal{A}$ and $A \cap B=\left(A^{\prime} \cup B^{\prime}\right)^{\prime} \in \mathcal{A}$.
So DeMorgan's law \rightarrow closure under \cup and ${ }^{\prime} \rightarrow$ closure under \cap.
EX: Experiment: Flip a coin twice. Let $H_{i}=$ heads on $i^{t h}$ flip.
Sample space: $\Omega=\left\{H_{1} H_{2}, H_{1} T_{2}, T_{1} H_{2}, T_{1} T_{2}\right\}\left(2^{2}\right.$ elements).
Event space: $\mathcal{A}=$ power set of $\Omega=$ set of all subsets of $\Omega\left(2^{2^{2}}\right.$ elements). $\mathcal{A}=\left\{\phi, \Omega,\left\{H_{1} H_{2}\right\},\left\{H_{1} T_{2}\right\},\left\{T_{1} H_{2}\right\},\left\{T_{1}, T_{2}\right\},\left\{H_{1}\right\},\left\{H_{2}\right\},\left\{T_{1}\right\},\left\{T_{2}\right\}\right.$, $\left.\left\{H_{1} H_{2}\right\} \cup\left\{T_{1} T_{2}\right\},\left\{H_{1} T_{2}\right\} \cup\left\{H_{2} T_{1}\right\},\left\{H_{1} H_{2}\right\}^{\prime},\left\{H_{1} T_{2}\right\}^{\prime},\left\{T_{1} H_{2}\right\}^{\prime},\left\{T_{1} T_{2}\right\}^{\prime}\right\}$.

DEF: The σ-algebra generated by the sets $A_{n}, n=1,2 \ldots \subset \Omega$ is the set of all countable unions, intersections, and complements of A_{n}.
EX: $\Omega=\{a, b, c\} . \sigma$-algebra generated by set $\{a, b\}$ is $\{\phi, \Omega,\{a, b\},\{c\}\}$.
DEF: Probability is a mapping $\operatorname{Pr}: \mathcal{A} \rightarrow[0,1]$ such that:
Domain: $\mathcal{A}=\sigma$-algebra=set of subsets of Ω. \mathcal{A} is called an "event space."
Range: $[0,1]=\{x: 0 \leq x \leq 1\}$ (a closed interval of the real line). and such that Pr satisfies the three Axioms of Probability:

1. $\operatorname{Pr}[A] \geq 0$ for any $A \in \mathcal{A} ; 2 . \operatorname{Pr}[\Omega]=1$ (maximum value is one);
2. If $\left\{A_{n}\right\}$ are pairwise disjoint $\Leftrightarrow A_{i} \cap A_{j}=\phi$ for $i \neq j$, then $\operatorname{Pr}\left[\cup_{n=1}^{\infty} A_{n}\right]=\sum_{n=1}^{\infty} \operatorname{Pr}\left[A_{n}\right]$ (probs. of disjoint sets add). In particular, $A \cap B=\phi \rightarrow \operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]$.

- $1=\operatorname{Pr}[\Omega]=\operatorname{Pr}\left[A \cup A^{\prime}\right]=\operatorname{Pr}[A]+\operatorname{Pr}\left[A^{\prime}\right] \rightarrow \operatorname{Pr}\left[A^{\prime}\right]=1-\operatorname{Pr}[A]$.
- $\operatorname{Pr}[A]=\operatorname{Pr}[A \cup \phi]=\operatorname{Pr}[A]+\operatorname{Pr}[\phi] \rightarrow \operatorname{Pr}[\phi]=0$ since $A \cap \phi=\phi$.
- $\operatorname{Pr}[\phi]=0$ BUT $\operatorname{Pr}[A]=0$ does NOT imply $A=\phi!$ (see overleaf).
- In general, assign probabilities in sample space Ω.
- Then use the three axioms of probability to compute probabilites $\operatorname{Pr}[A]$ for each $A \in \mathcal{A}=$ event space=domain of Pr mapping.
"Thm.": Omitting "countable," the axioms of probability $\rightarrow 0=1$!
"Proof": First, we need the following lemma (small intermediate result):
DEF: A wheel of fortune is an experiment that generates an $x \in[0,1)=\Omega$ such that $\operatorname{Pr}[\{x\}]=\operatorname{Pr}[\{y\}]$ for all $x, y \in[0,1)$ ("equally likely choice").

Lemma: Let x be any specific number in $[0,1)$, e.g., $x=0.5$. Then $\operatorname{Pr}[\{x\}]=0$.
Proof: Suppose $\operatorname{Pr}[\{x\}]=\epsilon>0$. Let $N=[1 / \epsilon]+1(\epsilon=0.001 \rightarrow N=1001)$.
Then $\operatorname{Pr}\left[\cup_{n=0}^{N-1}\left\{\frac{n}{N}\right\}\right]=\sum_{n=0}^{N-1} \operatorname{Pr}\left[\left\{\frac{n}{N}\right\}\right]=\sum_{n=0}^{N-1} \epsilon=N \epsilon>1$. No way.
"Proof": $1=\operatorname{Pr}[[0,1)]=\operatorname{Pr}\left[\cup_{x \in[0,1)}\{x\}\right]=\sum_{x \in[0,1)} \operatorname{Pr}[\{x\}]=\sum_{x \in[0,1)} 0=0$!
What went wrong? The third = above used the third axiom, assuming it held for $\cup_{x \in[0,1)}$ in the same way it holds for $\cup_{n=1}^{\infty}$.
Clearly there is a difference between $\mathcal{Z}=\{$ integers $\}$ and $[0,1)$: The third axiom holds for the first infinite set but not the second. \mathcal{Z} is countably infinite, while $[0,1)$ is uncountably infinite.

Four reasons to worry about countable vs. uncountable infinity:

1. The third axiom of probability holds only for countable infinities.
2. σ-algebras are closed only under a countable number of \cup, \cap. Later, we will encounter the following for random processes:
3. Discrete-time random processes are defined on countable times; Continuous-time processes are defined on uncountable times.
4. The Kolmogorov extension theorem holds only for countable times.

DEF: The Borel sets $=\mathcal{B}$ in $\mathcal{R}=$ reals are the σ-algebra generated by the set of all open intervals $(a, b)=\{x: a<x<b\}$ for all $a, b \in \mathcal{R}$.
i.e.: Each $B \in \mathcal{B}$ can be written as a countable \cup, \cap,' of intervals (a, b).

Who cares? For the wheel of fortune experiment, let $\operatorname{Pr}[(a, b)]=b-a$. We can compute $\operatorname{Pr}[B]$ for any $B \in \mathcal{B} \cap[0,1]$, and only for such B !

1. $\{x\} \in \mathcal{B}$ since $\{x\}=\cap_{n=1}^{\infty}\left(x-\frac{1}{n}, x+\frac{1}{n}\right)$ (singleton sets Borel).
2. $\{$ Rationals $\} \in \mathcal{B}$ since $\{$ Rationals $\}=\cup_{x \in \text { countable set }}\{x\}$.
3. $\{$ Irrationals $\} \in \mathcal{B}$ since $\{$ Irrationals $\}=\{\text { Rationals }\}^{\prime}(\sigma$-algebra $)$.
4. BUT: \mathcal{B} is NOT the power set (set of all subsets) of \mathcal{R} !

There exist "unmeasurable sets" that are subsets of \mathcal{R} but not of \mathcal{B}. Cannot compute Pr [unmeasurable] using axioms of probability.

