DEF: Ω =sample space=set of all distinguishable outcomes of an experiment. **DEF:** \mathcal{A} =event space=set of subsets of Ω such that \mathcal{A} is a σ - algebra.

- **DEF:** An Algebra = \mathcal{A} =a set of subsets of a set Ω such that:
 - 1. $A \in \mathcal{A}$ and $B \in \mathcal{A} \to A \cup B \in \mathcal{A}$ and $A \cap B \in \mathcal{A}$;
 - 2. $A \in \mathcal{A} \to A' = \Omega A \in \mathcal{A}$. Closed under \cup, \cap , complement in Ω .
- **DEF:** A σ algebra is an algebra closed under countable number of \cup , \cap .
- **NOTE:** Empty set= ϕ and Ω are always members of any algebra \mathcal{A} ,
 - since $A \in \mathcal{A} \to A' \in \mathcal{A} \to \phi = A \cap A' \in \mathcal{A}$ and $\Omega = A \cup A' \in \mathcal{A}$.
- **NOTE:** $A \in \mathcal{A}$ and $B \in \mathcal{A} \to A \cup B \in \mathcal{A}$ and $A \cap B = (A' \cup B')' \in \mathcal{A}$. So DeMorgan's law \rightarrow closure under \cup and $' \rightarrow$ closure under \cap .
 - **EX:** Experiment: Flip a coin twice. Let H_i =heads on i^{th} flip. Sample space: $\Omega = \{H_1H_2, H_1T_2, T_1H_2, T_1T_2\}$ (2² elements). Event space: \mathcal{A} =power set of Ω =set of all subsets of Ω (2^{2²} elements). $\mathcal{A} = \{\phi, \Omega, \{H_1H_2\}, \{H_1T_2\}, \{T_1H_2\}, \{T_1, T_2\}, \{H_1\}, \{H_2\}, \{T_1\}, \{T_2\}, \{H_1H_2\}\cup\{T_1T_2\}, \{H_1T_2\}\cup\{H_2T_1\}, \{H_1H_2\}', \{H_1T_2\}', \{T_1H_2\}', \{T_1T_2\}'\}$.
 - **DEF:** The σ -algebra generated by the sets $A_n, n = 1, 2... \subset \Omega$ is the set of all countable unions, intersections, and complements of A_n . **EX:** $\Omega = \{a, b, c\}$. σ -algebra generated by set $\{a, b\}$ is $\{\phi, \Omega, \{a, b\}, \{c\}\}$.
 - **DEF:** Probability is a mapping $Pr: \mathcal{A} \to [0, 1]$ such that:
- **Domain:** $\mathcal{A} = \sigma$ -algebra=set of subsets of Ω . \mathcal{A} is called an "event space."
- **Range:** $[0,1] = \{x : 0 \le x \le 1\}$ (a closed interval of the real line). and such that Pr satisfies the three Axioms of Probability:
 - 1. $Pr[A] \ge 0$ for any $A \in \mathcal{A}$; 2. $Pr[\Omega] = 1$ (maximum value is one);
 - 3. If $\{A_n\}$ are pairwise disjoint $\Leftrightarrow A_i \cap A_j = \phi$ for $i \neq j$, then $Pr[\bigcup_{n=1}^{\infty} A_n] = \sum_{n=1}^{\infty} Pr[A_n]$ (probs. of disjoint sets add). In particular, $A \cap B = \phi \to Pr[A \cup B] = Pr[A] + Pr[B]$.
 - $1 = Pr[\Omega] = Pr[A \cup A'] = Pr[A] + Pr[A'] \to Pr[A'] = 1 Pr[A].$
 - $Pr[A] = Pr[A \cup \phi] = Pr[A] + Pr[\phi] \rightarrow Pr[\phi] = 0$ since $A \cap \phi = \phi$.
 - $Pr[\phi] = 0$ BUT Pr[A] = 0 does NOT imply $A = \phi!$ (see overleaf).
 - In general, assign probabilities in sample space Ω .
 - Then use the three axioms of probability to *compute* probabilites Pr[A] for each $A \in \mathcal{A}$ =event space=domain of Pr mapping.

"Thm.": Omitting "countable," the axioms of probability $\rightarrow 0 = 1!$ "**Proof**": First, we need the following lemma (small intermediate result):

DEF: A wheel of fortune is an experiment that generates an $x \in [0, 1) = \Omega$ such that $Pr[\{x\}] = Pr[\{y\}]$ for all $x, y \in [0, 1)$ ("equally likely choice").

Lemma: Let x be any specific number in [0, 1), e.g., x = 0.5. Then $Pr[\{x\}] = 0$. **Proof:** Suppose $Pr[\{x\}] = \epsilon > 0$. Let $N = [1/\epsilon] + 1$ ($\epsilon = 0.001 \rightarrow N = 1001$). Then $Pr[\bigcup_{n=0}^{N-1} \{\frac{n}{N}\}] = \sum_{n=0}^{N-1} Pr[\{\frac{n}{N}\}] = \sum_{n=0}^{N-1} \epsilon = N\epsilon > 1$. No way.

"**Proof**": $1 = Pr[[0,1)] = Pr[\bigcup_{x \in [0,1)} \{x\}] = \sum_{x \in [0,1)} Pr[\{x\}] = \sum_{x \in [0,1)} 0 = 0!$

What went wrong? The third = above used the third axiom, assuming it held for $\bigcup_{x \in [0,1)}$ in the same way it holds for $\bigcup_{n=1}^{\infty}$.

Clearly there is a difference between $\mathcal{Z} = \{integers\}$ and [0, 1): The third axiom holds for the first infinite set but not the second. \mathcal{Z} is countably infinite, while [0, 1) is uncountably infinite.

Four reasons to worry about countable vs. uncountable infinity:

- 1. The third axiom of probability holds only for countable infinities.
- 2. σ -algebras are closed only under a countable number of \cup, \cap . Later, we will encounter the following for random processes:
- 3. Discrete-time random processes are defined on countable times; Continuous-time processes are defined on uncountable times.
- 4. The Kolmogorov extension theorem holds only for countable times.
- **DEF:** The Borel sets= \mathcal{B} in \mathcal{R} =reals are the σ -algebra generated by the set of all open intervals $(a, b) = \{x : a < x < b\}$ for all $a, b \in \mathcal{R}$.

i.e.: Each $B \in \mathcal{B}$ can be written as a *countable* $\cup, \cap, '$ of intervals (a, b).

- Who cares? For the wheel of fortune experiment, let Pr[(a, b)] = b a. We can compute Pr[B] for any $B \in \mathcal{B} \cap [0,1]$, and only for such B!
 - 1. $\{x\} \in \mathcal{B}$ since $\{x\} = \bigcap_{n=1}^{\infty} (x \frac{1}{n}, x + \frac{1}{n})$ (singleton sets Borel). 2. $\{Rationals\} \in \mathcal{B}$ since $\{Rationals\} = \bigcup_{x \in countable set} \{x\}.$

 - 3. $\{Irrationals\} \in \mathcal{B} \text{ since } \{Irrationals\} = \{Rationals\}' (\sigma\text{-algebra}).$
 - 4. BUT: \mathcal{B} is NOT the power set (set of all subsets) of \mathcal{R} ! There exist "unmeasurable sets" that are subsets of \mathcal{R} but not of \mathcal{B} . Cannot compute *Pr*[*unmeasurable*] using axioms of probability.