Problem: Let $\{x_1 \ldots x_N\}$ be iddrv with $x_i \sim N(m, \sigma^2)$ and m, σ^2 unknown. Want: To compute \hat{m}_{MLE} and $\hat{\sigma}_{MLE}^2$ based on observations $\{X_1 \dots X_N\}$. Solution: $f_{x_1 \dots x_N}(X_1 \dots X_N) = \prod_{i=1}^N \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(X_i - m)^2/\sigma^2}$ since x_i indpt rvs.

Set:
$$0 = \frac{\partial}{\partial m} \log f_{x_1 \dots x_N} = \frac{\partial}{\partial m} \left[-\frac{N}{2} \log(2\pi) - \frac{N}{2} \log\sigma^2 - \frac{1}{2} \sum_{i=1}^N (X_i - m)^2 / \sigma^2 \right]$$
$$= \frac{1}{\sigma^2} \sum_{i=1}^N (X_i - m) = 0 \rightarrow \hat{m}_{MLE} = \frac{1}{N} \sum_{i=1}^N X_i = sample mean.$$

Set:
$$0 = \frac{\partial}{\partial \sigma^2} \log f_{x_1...x_N} = \frac{\partial}{\partial \sigma^2} [-\frac{N}{2} \log(2\pi) - \frac{N}{2} \log \sigma^2 - \frac{1}{2} \sum_{i=1}^N (X_i - m)^2 / \sigma^2]$$
$$= -\frac{N}{2} \frac{1}{\sigma^2} + \frac{1}{2} \sum_{i=1}^N (X_i - m)^2 / (\sigma^2)^2 = 0 \rightarrow \hat{\sigma}_{MLE}^2 = \frac{1}{N} \sum_{i=1}^N (X_i - m)^2.$$
Replace $m \text{ in } \hat{\sigma}_{MLE}^2$ with $\hat{m}_{MLE} \rightarrow \hat{\sigma}_{MLE}^2 = sample variance.$

Note: $\hat{\sigma}_{MLE} = \sqrt{\hat{\sigma}_{MLE}^2}$: MLE commutes with nonlinear functions g(a). Why? $\stackrel{\text{argmax}}{A} f_{r|a}(R|A) = \stackrel{\text{argmax}}{g(A)} f_{r|g(a)}(R|g(A))$. No Jacobian for $a \to g(a)$.

Q: What are some desirable properties for estimators to have? **DEF:** Unbiased estimator has $E[\hat{a}(x_1 \dots x_N)] = A$ (x_i now treated as rvs). **DEF:** Asymptotically unbiased estimator has $\lim_{N \to \infty} E[\hat{a}(x_1 \dots x_N)] = A.$

- Sample mean is unbiased: E[m̂] = E[¹/_N Σ^N_{i=1} x_i] = ¹/_N Σ^N_{i=1} E[x_i] = m.
 Sample variance is *biased*: E[σ̂²] = E[¹/_N Σ^N_{i=1} (X_i − m̂)²] = ^{N-1}/_N σ².
 Sample variance is *asymp*. unbiased: ^{lim}_{N→∞} E[σ̂²] = ^{lim}_{N→∞} ^{N-1}/_N σ² = σ².

Note: $\hat{\sigma}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \frac{1}{N} \sum_{j=1}^{N} X_j)^2$ is an unbiased estimator of σ^2 . Note: If we know mean m, then the sample variance is unbiased estimator. **Note:** Algebra for sample variance biased and consistent is on pp. 274-5.

DEF: Seq. of rvs $\{a_1, a_2 \dots\} \to a \text{ in probability if } \lim_{N \to \infty} \Pr[|a_N - a| > \epsilon] = 0.$ **DEF:** Consistent estimator has $\lim_{N \to \infty} \hat{a}(x_1 \dots x_N) = a$ in probability. **Means:** More data helps: The distribution of \hat{a} becomes tighter around a.

• Sample mean is consistent: Use the Chebyschev inequality: $Pr[|\hat{m} - m| > \epsilon] = Pr[|\hat{m} - E[\hat{m}]| > \epsilon] \le \frac{\sigma_{\hat{m}}^2}{\epsilon^2} = \frac{\sigma^2}{N\epsilon^2} \to 0 \text{ as } N \to \infty.$ **Using:** \hat{m} unbiased and $\sigma_{\hat{m}}^2 = \frac{1}{N^2} \sum_{i=1}^N \sigma^2 = \frac{\sigma^2}{N}$. We have just proved the: **Thm:** Weak Law of Large Numbers: Let $\{x_i\}$ be iddrv with $E[x_i], \sigma_i^2 < \infty$. \rightarrow The sample mean is a *consistent* estimator of the expectation $E[x_i]$. **Means:** Mean \hat{m} of data approaches mean $m = E[x_i]$ of random variables.