Problem: Let $\left\{x_{1} \ldots x_{N}\right\}$ be iidrv with $x_{i} \sim N\left(m, \sigma^{2}\right)$ and m, σ^{2} unknown.
Want: To compute $\hat{m}_{M L E}$ and $\hat{\sigma}_{M L E}^{2}$ based on observations $\left\{X_{1} \ldots X_{N}\right\}$. Solution: $f_{x_{1} \ldots x_{N}}\left(X_{1} \ldots X_{N}\right)=\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2}\left(X_{i}-m\right)^{2} / \sigma^{2}}$ since x_{i} indpt rvs.

Set: $0=\frac{\partial}{\partial m} \log f_{x_{1} \ldots x_{N}}=\frac{\partial}{\partial m}\left[-\frac{N}{2} \log (2 \pi)-\frac{N}{2} \log \sigma^{2}-\frac{1}{2} \sum_{i=1}^{N}\left(X_{i}-m\right)^{2} / \sigma^{2}\right]$ $=\frac{1}{\sigma^{2}} \sum_{i=1}^{N}\left(X_{i}-m\right)=0 \rightarrow \hat{m}_{M L E}=\frac{1}{N} \sum_{i=1}^{N} X_{i}=$ sample mean.

Set: $0=\frac{\partial}{\partial \sigma^{2}} \log f_{x_{1} \ldots x_{N}}=\frac{\partial}{\partial \sigma^{2}}\left[-\frac{N}{2} \log (2 \pi)-\frac{N}{2} \log \sigma^{2}-\frac{1}{2} \sum_{i=1}^{N}\left(X_{i}-m\right)^{2} / \sigma^{2}\right]$ $=-\frac{N}{2} \frac{1}{\sigma^{2}}+\frac{1}{2} \sum_{i=1}^{N}\left(X_{i}-m\right)^{2} /\left(\sigma^{2}\right)^{2}=0 \rightarrow \hat{\sigma}_{M L E}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(X_{i}-m\right)^{2}$. Replace m in $\hat{\sigma}_{M L E}^{2}$ with $\hat{m}_{M L E} \rightarrow \hat{\sigma}_{M L E}^{2}=$ sample variance.
Note: $\hat{\sigma}_{M L E}=\sqrt{\hat{\sigma}_{M L E}^{2}}$: MLE commutes with nonlinear functions $g(a)$.
Why? $\underset{A}{\operatorname{argmax}} f_{r \mid a}(R \mid A)=\underset{g(A)}{\operatorname{argmax}} f_{r \mid g(a)}(R \mid g(A))$. No Jacobian for $a \rightarrow g(a)$.
Q: What are some desirable properties for estimators to have?
DEF: Unbiased estimator has $E\left[\hat{a}\left(x_{1} \ldots x_{N}\right)\right]=A\left(x_{i}\right.$ now treated as rvs $)$.
DEF: Asymptotically unbiased estimator has $\lim _{N \rightarrow \infty} E\left[\hat{a}\left(x_{1} \ldots x_{N}\right)\right]=A$.

- Sample mean is unbiased: $E[\hat{m}]=E\left[\frac{1}{N} \sum_{i=1}^{N} x_{i}\right]=\frac{1}{N} \sum_{i=1}^{N} E\left[x_{i}\right]=m$.
- Sample variance is biased: $E\left[\hat{\sigma}^{2}\right]=E\left[\frac{1}{N} \sum_{i=1}^{N}\left(X_{i}-\hat{m}\right)^{2}\right]=\frac{N-1}{N} \sigma^{2}$.
- Sample variance is asymp. unbiased: $\lim _{N \rightarrow \infty} E\left[\hat{\sigma}^{2}\right]=\lim _{N \rightarrow \infty} \frac{N-1}{N} \sigma^{2}=\sigma^{2}$.

Note: $\hat{\sigma}^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(X_{i}-\frac{1}{N} \sum_{j=1}^{N} X_{j}\right)^{2}$ is an unbiased estimator of σ^{2}.
Note: If we know mean m, then the sample variance is unbiased estimator.
Note: Algebra for sample variance biased and consistent is on pp. 274-5.
DEF: Seq. of rvs $\left\{a_{1}, a_{2} \ldots\right\} \rightarrow$ a in probability if $\lim _{N \rightarrow \infty} \operatorname{Pr}\left[\left|a_{N}-a\right|>\epsilon\right]=0$.
DEF: Consistent estimator has $\lim _{N \rightarrow \infty} \hat{a}\left(x_{1} \ldots x_{N}\right)=$ a in probability.
Means: More data helps: The distribution of \hat{a} becomes tighter around a.

- Sample mean is consistent: Use the Chebyschev inequality:
$\operatorname{Pr}[|\hat{m}-m|>\epsilon]=\operatorname{Pr}[|\hat{m}-E[\hat{m}]|>\epsilon] \leq \frac{\sigma_{\hat{m}}^{2}}{\epsilon^{2}}=\frac{\sigma^{2}}{N \epsilon^{2}} \rightarrow 0$ as $N \rightarrow \infty$.
Using: \hat{m} unbiased and $\sigma_{\hat{m}}^{2}=\frac{1}{N^{2}} \sum_{i=1}^{N} \sigma^{2}=\frac{\sigma^{2}}{N}$. We have just proved the:
Thm: Weak Law of Large Numbers: Let $\left\{x_{i}\right\}$ be iidrv with $E\left[x_{i}\right], \sigma_{i}^{2}<\infty$.
\rightarrow The sample mean is a consistent estimator of the expectation $E\left[x_{i}\right]$.
Means: Mean \hat{m} of data approaches mean $m=E\left[x_{i}\right]$ of random variables.

