Given: $x(t)$ is a real-valued 0 -mean WSS random process (RP).
With: Autocorrelation $R_{x}(\tau)=E[x(t) x(t \pm \tau)]$ for any time t, Note: $x(t) 0$-mean $\rightarrow R_{x}(\tau)=K_{x}(\tau)=$ covariance func. \& $\operatorname{lag} \tau$. WSS: $E[x(t) x(s)]=R_{x}(t-s)$; not function of t and s separately.

DEF: Power spectral density (PSD) $S_{x}(\omega)$ is defined as: $S_{x}(\omega)=\mathcal{F}\left\{R_{x}(\tau)\right\}=\int_{-\infty}^{\infty} R_{x}(\tau) e^{-j \omega \tau} d \tau=2 \int_{0}^{\infty} R_{x}(\tau) \cos (\omega \tau) d \tau$.
$R_{x}(\tau)=\mathcal{F}^{-1}\left\{S_{x}(\omega)\right\}=\int_{-\infty}^{\infty} S_{x}(\omega) e^{j \omega \tau} \frac{d \omega}{2 \pi}=\int_{0}^{\infty} S_{x}(\omega) \cos (\omega \tau) \frac{d \omega}{\pi}$.
Assume: $x(t)$ is $2 n d$-order process: $E\left[x(t)^{2}\right]<\infty$ (except: white).

Properties of Power Spectral Density

1. $x(t)$ real $\rightarrow R_{x}(\tau)=R_{x}(-\tau) \rightarrow S_{x}(\omega)=S_{x}(-\omega)$ is real: $\mathcal{F}\{$ real, even function $\}=$ real, even function \rightarrow cosine xform.
2. $R_{x}(\tau)$ is positive semidefinite $\Leftrightarrow S_{x}(\omega) \geq 0$:

$$
\sigma_{y(t)=\int f(t) x(t) d t}^{2}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) R_{x}(t-s) f^{*}(s) d t d s \geq 0
$$

Proof: \Rightarrow : Suppose $\exists \omega_{o}$ so that $S_{x}\left(\omega_{o}\right)<0$. Let $f(t)=e^{j \omega_{o} t}$. Then: $\sigma_{y}^{2}=\iint e^{j \omega_{o} t} R_{x}(t-s) e^{-j \omega_{o} s} d t d s=S_{x}\left(\omega_{o}\right) \cdot \infty<0$.
Proof: \Leftarrow : For any real $f(t)$, write $f(t)=\int F(\omega) e^{j \omega t} d \omega$.
Then: $\sigma_{y}^{2}=\int|F(\omega)|^{2} S_{x}(\omega) d \omega \geq 0$ using Parseval twice.
Note: Much simpler in the frequency domain! (just nonnegative)
3. See table of properties on p. 471 of Stark and Woods.
4. Average power $=E\left[x(t)^{2}\right]=\sigma_{x(t)}^{2}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{x}(\omega) d \omega$.

Note: "Power" is the tendency of random $|x(t)|$ to be large: Larger variance \rightarrow broader $\mathrm{pdf} \rightarrow \mathrm{RV}$ tends to be larger.
EX: Let $v(t)=$ random voltage across a resistor $R=1 \Omega$. Average power $=E\left[v(t)^{2}\right]$; large despite $E[v(t)]=0$.

EECS 501 PSD OF LINEAR TIME-INVARIANT Fall 2000 (LTI) SYSTEM OUTPUT WITH WSS PROCESS INPUT

1. LTI system; impulse response $h(t): \delta(t) \rightarrow \overline{|h(t)|} \rightarrow h(t)$
2. LTI system has transfer function $H(\omega)=\overline{\mathcal{F}\{h(t)\} \text { : }}$ $\cos (\omega t) \rightarrow \overline{\underline{|h(t)|}} \rightarrow|H(\omega)| \cos (\omega t+A R G[H(\omega)])$
3. WSS random processes: $x(t) \rightarrow \underline{\underline{|h(t)|}} \rightarrow y(t)$
4. IMPORTANT FORMULA: $S_{y}(\omega)=|H(\omega)|^{2} S_{x}(\omega)$.

From: Take \mathcal{F} of $R_{y}(\tau)=\iint h(u) h(v) R_{x}(\tau-u+v) d u d v$.
Note: Compare to random vectors: $y=A x \rightarrow K_{y}=A K_{x} A^{T}$.
EX: $x(t) \rightarrow \overline{\left|\frac{d y}{d t}+a y(t)=x(t)\right|} \rightarrow y(t), \quad a>0$ so stable. $x(t)$ is a 0-mean uncorrelated WSS RP. What is $S_{y}(\omega)$?

1. 0-mean WSS uncorrelated $\rightarrow R_{x}(\tau)=\delta(\tau) \rightarrow S_{x}(\omega)=1$. (Assume WLOG that the area under impulse is unity.)
2a. Impulse response: $h(t)=e^{-a t}$ for $t \geq 0 ; 0$ otherwise.
2b. Transfer function: $H(\omega)=\mathcal{F}\{h(t)\}=1 /(j \omega+a)$.
2. $S_{y}(\omega)=|1 /(j \omega+a)|^{2} \cdot 1=1 /\left(\omega^{2}+a^{2}\right)$.
3. $R_{y}(\tau)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{1}{\omega^{2}+a^{2}} e^{j \omega \tau} d \omega=\frac{1}{2 a} e^{-a|\tau|}$.
4. $\sigma_{y(t)}^{2}=E\left[y(t)^{2}\right]=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{1}{\omega^{2}+a^{2}} d \omega=R_{y}(0)=\frac{1}{2 a}$
5. $x(t)$ Gaussian $\rightarrow y(t)$ Gaussian $\rightarrow f_{y(t)}(Y) \sim N\left(0, \frac{1}{2 a}\right)$.
6. See p. 487 of Stark and Woods for more details.

EX: $x(t)$ Gaussian; $a=5 . \operatorname{Pr}[1<x(5)<2 \& 3<x(6)<4]=$?
Soln: $\operatorname{Pr}=\int_{1}^{2} \int_{3}^{4} \frac{1}{2 \pi} \frac{1}{\sqrt{\operatorname{det}[K]}} e^{-\frac{1}{2}\left[X_{5}, X_{6}\right] K^{-1}\left[X_{5}, X_{6}\right]^{\prime}} d X_{6} d X_{5}$
where: $K=\frac{1}{10}\left[\begin{array}{cc}1 & e^{-5} \\ e^{-5} & 1\end{array}\right] \rightarrow \operatorname{det}[K]=0.01\left(1-e^{-10}\right)$.

Def: A 0-mean WSS RP $x(t)$ is a white process if $S_{x}(\omega)=\sigma^{2}$ for some positive constant $\sigma^{2}>0$.

Comments on White Processes:

1. All frequencies ω equally represented \rightarrow " white" process: Red+orange + yellow+green + blue + violet+others=white if all colors (even not listed) present in equal strengths.
2. $R_{x}(\tau)=\sigma^{2} \delta(\tau) ; x(t)$ is an uncorrelated process.
3. Power $=R_{x}(0)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \sigma^{2} d \omega \rightarrow \infty$! (impulse at $\tau=0$).
a. Infinite power \rightarrow white process cannot exist physically!
b. NOT a 2nd-order process. Still: often used in models.
4. Implications of continuous-time uncorrelated RP:
a. Knowledge of $x(7)$ does not help you predict $x(7.000001)$;
b. Typical sample function (realization) of a white RP: \sim scatter plot (dust sprinkled on figure with t axis).
c. Takes infinite power to be able to move from $x(7)$ to different value $x(7.000001)$ in almost-zero time.

So What Good are White RPs If They Don't Exist?

1a. In modelling: Usually pass white $x(t)$ through LTI system. 1b. Real-life systems have finite bandwidth: $\lim _{\omega \rightarrow \infty}|H(\omega)|=0$.
1c. So $S_{x}(\omega)$ doesn't matter for large ω : gets filtered anyway. White input and bandlimited white input \rightarrow same output.
2. A 2nd-order 0-mean WSS RP $x(t)$ can be modelled as:

$$
H(s)=\frac{\prod\left(s+z_{i}\right)\left(s+z_{i}^{*}\right)}{\prod\left(s+p_{i}\right)\left(s+p_{i}^{*}\right)} \rightarrow S_{x}(\omega)=\frac{\prod\left(\omega^{2}+z_{i}^{2}\right)\left(\omega^{2}+z_{i}^{* 2}\right)}{\prod\left(\omega^{2}+p_{i}^{2}\right)\left(\omega^{2}+p_{i}^{* 2}\right)}=\frac{\prod\left|\omega^{2}+z_{2}^{2}\right|^{2}}{\prod\left|\omega^{2}+p_{i}^{2}\right|^{2}} .
$$

using: $(j \omega+z)(-j \omega+z)\left(j \omega+z^{*}\right)\left(-j \omega+z^{*}\right)=\left(\omega^{2}+z^{2}\right)\left(\omega^{2}+z^{* 2}\right)$.

1. $x(t) \rightarrow \overline{|H(\omega)|} \rightarrow y(t), \quad H(\omega)= \begin{cases}1, & \text { if } 3 \leq|\omega| \leq 3.001 ; \\ 0, & \text { otherwise } .\end{cases}$
2. Then $S_{y}(\omega)= \begin{cases}S_{x}(\omega) \approx S_{x}(3), & \text { if } 3 \leq|\omega| \leq 3.001 ; \\ 0, & \text { otherwise. }\end{cases}$
3. Then the average power $E\left[y(t)^{2}\right]$ in output $y(t)$ is:

$$
E\left[y(t)^{2}\right]=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{y}(\omega) d \omega=\frac{2}{2 \pi} \int_{3}^{3.001} S_{x}(\omega) d \omega \approx \frac{0.001}{\pi} S_{x}(3) .
$$

4. Interpretation: $S_{x}(3)$ is the average power per unit bilateral bandwidth in $x(t)$ at $\omega=3$:
a. Bilateral: components at both $\omega=3$ and $\omega=-3$;
b. $\frac{2 \Delta}{2 \pi} S_{x}\left(\omega_{o}\right)$ is the average power in random process $x(t)$ in the frequency band of width $\Delta: \omega_{o} \leq \omega \leq \omega_{o}+\Delta$.
c. Units: $x(t)$ volts $\rightarrow \frac{1}{2 \pi} S_{x}(\omega) \frac{\text { volts }^{2}}{\text { rad } / \text { sec }} ; S_{x}(f) \frac{\text { volts }}{}{ }^{2}$ Hertz .
5. $S_{x}(\omega)$ must be multiplied by frequency to get power in a frequency band; it is a power spectral density:
a. - $S_{x}\left(\omega_{o}\right) \frac{2 \Delta}{2 \pi}=$ Power in $\left[\omega_{o} \leq \omega \leq \omega_{o}+\Delta\right]$.
b. - $S_{x}\left(f_{o}\right) 2 \Delta=$ Power in $\left[f_{o} \leq f \leq f_{o}+\Delta\right]$.
c. Compare: $f_{x}(X) \Delta=\operatorname{Pr}[X \leq x \leq X+\Delta]$.
6. This interpretation makes the following evident:
a. $S_{x}(\omega) \geq 0$: otherwise power in some frequency band would be negative! Compare to: $f_{x}(X) \geq 0$.
b. Total average power $=E\left[x(t)^{2}\right]=\int_{-\infty}^{\infty} S_{x}(f) d f$. Compare to: Total probability $=\int_{-\infty}^{\infty} f_{x}(X) d X=1$.
7. Recall we can decorrelate a random N -vector x as follows:
a. Covariance matrix K_{x} has N eigenvalues λ_{i} and eigenvectors $\phi_{i}, i=1 \ldots N$, where $K_{x} \phi_{i}=\lambda_{i} \phi_{i}$.
b. Let $A=\left[\phi_{1} \ldots \phi_{N}\right]^{T}$ (don't forget transpose!) and $y=A x$. Then: $y_{i}=\phi_{i}^{T} x=\phi_{i} \cdot x=\sum_{j=1}^{N}\left(\phi_{i}\right)_{j} x_{j}$.
c. Then $K_{y}=A K_{x} A^{T}=D I A G\left[\lambda_{1} \ldots \lambda_{N}\right]$ and then $E\left[y_{i} y_{j}\right]=\lambda_{i} \delta(i-j) \rightarrow\left\{y_{i}\right\}$ have been decorrelated.
d. $y=A x \rightarrow x=A^{T} y \rightarrow x=\sum_{i=1}^{N} y_{i} \phi_{i}$:
$x=$ sum of uncorrelated RVs \times eigenvectors.
8. Now try this for 2nd-order 0-mean WSS processes:
a. Eigenfunctions of LTI systems: $\phi(t)=e^{j \omega t}$: Means
b. $e^{j \omega t} \rightarrow \overline{|H(\omega)|} \rightarrow H(\omega) e^{j \omega t}=|H(\omega)| e^{(j \omega t+A R G[H(\omega)])}$.
9. $x(t)$ is a real-valued 2nd-order 0-mean WSS process.
a. Define RVs $X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t}$, for all ω.
b. Then $\{X(\omega)\}$ are uncorrelated random variables:

$$
E\left[X\left(\omega_{1}\right) X^{*}\left(\omega_{2}\right)\right]=2 \pi S_{x}\left(\omega_{1}\right) \delta\left(\omega_{1}-\omega_{2}\right)
$$

4. Spectral interpretation of 2nd-order WSS RPs:
$x(t)=\int_{-\infty}^{\infty} X(\omega) e^{j \omega t} \frac{d \omega}{2 \pi}: \int$ uncorrelated RVs \times eigenfunctions.
5. We have for finite but large T and interval $\left[-\frac{T}{2}, \frac{T}{2}\right]$:

$$
\mathbf{K - L :}: x(t)=\sum_{n=-\infty}^{\infty} x_{n} \frac{1}{\sqrt{T}} e^{j 2 \pi n t / T}, \quad|t| \leq T / 2 \rightarrow \infty
$$

where: $x_{n}=\int_{-T / 2}^{T / 2} x(t) \frac{1}{\sqrt{T}} e^{-j 2 \pi n t / T} d t$ for integers n.
Then: $E\left[x_{i} x_{j}\right]=S_{x}(2 \pi i / T) \delta(i-j) \rightarrow\left\{x_{n}\right\}$ uncorrelated.
DEF: This is Karhunen-Loeve expansion for WSS processes.
Works: $\quad S_{x}(\omega) \approx 0$ for $|\omega|>B \rightarrow$ need $T B \gg 1$.

EECS 501 SPECTRAL INTERPRETATION

1. $E\left[X\left(\omega_{1}\right) X^{*}\left(\omega_{2}\right)\right]=E\left[\int x(t) e^{-j \omega_{1} t} d t \int x(s) e^{j \omega_{2} s} d s\right]=$ $\iint E[x(t) x(s)] e^{-j\left(\omega_{1} t-\omega_{2} s\right)} d t d s . E[x(t) x(s)]=R_{x}(t-s)$.
2. Change variables: $t, s \rightarrow \tau=t-s, z=t+s:|J|=2$.

$$
\begin{aligned}
& E\left[X\left(\omega_{1}\right) X^{*}\left(\omega_{2}\right)\right]=\iint R_{x}(\tau) e^{-j\left[\omega_{1}(\tau+z)+\omega_{2}(\tau-z)\right] / 2} \frac{d \tau d z}{2} \\
& =\int R_{x}(\tau) e^{-j\left(\frac{\omega_{1}+\omega_{2}}{2}\right) \tau} d \tau \int e^{-j\left(\frac{\omega_{1}-\omega_{2}}{2}\right) z}\left(\frac{d z}{2}\right)[\mathcal{F}\{1\}=2 \pi \delta(\omega)] \\
& =2 \pi S_{x}\left(\frac{\omega_{1}+\omega_{2}}{2}\right) \delta\left(\omega_{1}-\omega_{2}\right)=2 \pi S_{x}\left(\omega_{1}\right) \delta\left(\omega_{1}-\omega_{2}\right) . \text { QED. }
\end{aligned}
$$

Gaussian RPs and The Distribution of $X(\omega)$

1. Let $x(t)$ be Gaussian $\mathrm{RP} \rightarrow X(\omega)$ Gaussian RVs:
a. $\operatorname{Re}[X(\omega)]$ and $\operatorname{Im}[X(\omega)]$ are Gaussian RVs;
b. $|X(\omega)|$ Rayleigh RVs; $A R G[X(\omega)]$ uniform RVs.

Rayleigh pdf: $f_{z}(Z)=\frac{Z}{\sigma^{2}} e^{-Z^{2} /\left(2 \sigma^{2}\right)}, Z \geq 0$. p. 138 .
2a. Physical Let $H(\omega)=\delta\left(\omega-\omega_{o}\right)+\delta\left(\omega+\omega_{o}\right)$: interpretation: $H(\omega)$ passes ONLY frequency ω_{o}.
b. $x(t) \rightarrow \overline{|H(\omega)|} \rightarrow y(t) ; \quad H(\omega)$ narrowband.
3. All possible sample functions of $\mathrm{RP} x(t)$ are filtered.
a. $y(t)=A \cos \left(\omega_{o} t\right)+B \sin \left(\omega_{o} t\right)$ for RVs A, B.
b. Jointly Gaussian RVs $A, B \sim N\left(0, S_{x}\left(\omega_{o}\right) \pi \infty\right)$.

REF: Papoulis, $3^{\text {rd }}$ ed. (1991), pp. 416-418.

Let: $x(t)$ and $y(t)$ be real-valued 0 -mean jointly WSS RPs.
with: Cross-correlation $R_{x y}(\tau)=E[x(t) y(t-\tau)]$ for any t.
Means: $E[x(t) y(s)]=R_{x y}(t-s)$; jointly WSS \rightarrow not t, s separately.
Def: The Cross-Spectral Density $S_{x y}(\omega)$ is defined as:
$S_{x y}(\omega)=\mathcal{F}\left\{R_{x y}(\tau)\right\} ; \quad R_{x y}(\tau)=\mathcal{F}^{-1}\left\{S_{x y}(\omega)\right\}$.

Properties of The Cross-Spectral Density

1. $R_{y x}(\tau)=R_{x y}(-\tau) \rightarrow S_{y x}(\omega)=S_{x y}(-\omega)=S_{x y}^{*}(\omega)$.
2. $S_{x y}(\omega)$, unlike $S_{x}(\omega)$, is not a real or even function.
3. WSS random processes: $x(t) \rightarrow \overline{|H(\omega)|} \rightarrow y(t)$

FORMULA: $S_{y x}(\omega)=H(\omega) S_{x}(\omega)$ (note $S_{y x}$, not $S_{x y}$):
Take \mathcal{F} of $R_{y x}(\tau)=\int h(u) R_{x}(\tau-u) d u$.
4. From \#1 and \#3 we have $S_{x y}(\omega)=H^{*}(\omega) S_{x}(\omega)$.
5. Exchange $x(t), y(t)$ and replace $H(\omega)$ with $\frac{1}{H(\omega)}$: $S_{y x}(\omega)=\frac{1}{H^{*}(\omega)} S_{y}(\omega) \rightarrow S_{y}(\omega)=|H(\omega)|^{2} S_{x}(\omega)!$

Example of Cross-Spectral Density

Let $x(t) \rightarrow \overline{|F(\omega)|} \rightarrow y(t)$ and $x(t) \rightarrow \overline{|G(\omega)|} \rightarrow z(t)$ Compute the cross-spectral density $S_{y z}(\omega)$. Solution:

1. $x(t), y(t), z(t)$ are real-valued 0 -mean jointly WSS RPs.
2. $y(t)=\int f(u) x(t-u) d u$ and $z(s)=\int g(v) x(s-v) d v \rightarrow$
3. $E[y(t) z(s)]=\iint f(u) g(v) E[x(t-u) x(s-v)] d u d v \rightarrow$ $R_{y z}(t-s)=\iint f(u) g(v) R_{x}(t-s-u+v) d u d v \rightarrow$ $S_{y z}(\omega)=F(\omega) G^{*}(\omega) S_{x}(\omega)$. Neat formula! (I think so)
4. Passbands of $F(\omega)$ and $G(\omega)$ don't overlap $\rightarrow R_{y z}(\tau)=0$. $y(t)$ and $z(t)$ (different frequency components of $x(t)$) are uncorrelated \rightarrow spectral interpretation of WSS RPs.

EECS 501 LLSE OF WSS RANDOM PROCESSES Fall 2000

Infinite Smoothing Filter for Signal in Noise:

1. $y(t), x(t), v(t)$ are 2nd-order 0-mean jointly WSS RPs.
a. Observe $y(t)=x(t)+v(t)$ where $E[x(t) v(s)]=0$.
b. $x(t)=$ signal, $v(t)=$ noise, $y(t)=$ noisy data.
2. We have the following (cross)covariance functions:
a. $R_{x y}=E[x(t) y(s)]=E[x(t)(x(s)+v(s))]=R_{x}$.
b. $R_{y}=E[(x(t)+v(t))(x(s)+v(s))]=R_{x}+R_{v}$.
3. GOAL: Compute LLSE of $x(t)$ from $\{y(s),-\infty<s<\infty\}$. NOTE: $x(t), v(t)$ jointly Gaussian RPs $\rightarrow \hat{x}_{L L S E}=\hat{x}_{L S}$.
4. LEMMA: 0-mean uncorrelated $\{x(i)\}$ and $\{v(i)\}$.

Observe $y(n)=x(n)+v(n)$ where $E[x(i) v(j)]=0$.
Then LLSE of $x(i)$ from $\{y(j),-\infty<j<\infty\}$ is
$\hat{x}=K_{x y} K_{y}^{-1} y=K_{x}\left(K_{x}+K_{v}\right)^{-1} y$
$=D I A G\left[\sigma_{x(i)}^{2}\right] D I A G\left[\sigma_{x(i)}^{2}+\sigma_{v(i)}^{2}\right]^{-1} y$
$\rightarrow \hat{x}(i)=\frac{\sigma_{x(i)}^{2}}{\sigma_{x(i)}^{2}+\sigma_{v(i)}^{2}} y(i)$ where $y=$ vector of $\{y(j)\}$.
Problem decouples since the $\{y(j)\}$ are uncorrelated.
5. Write $x(t)=\int_{-\infty}^{\infty} X(\omega) e^{j \omega t} \frac{d \omega}{2 \pi}$; write $y(t), v(t)$ similarly. Apply LEMMA to RVs $X(\omega), Y(\omega), V(\omega)$. Solution: $y(t) \rightarrow \overline{\frac{S_{x}(\omega)}{\left.\frac{S_{x}(\omega)+S_{v}(\omega)}{} \right\rvert\,}} \rightarrow \hat{x}(t)$.
6. Comments:
a. More insightful than Recitation derivation!
b. Shows significance of decorrelation=prewhitening:

Eliminates need to compute K_{y}^{-1} (saves much work).
c. See Stark and Woods p. 553 for more details.

