Given: x(t) is a real-valued 0-mean WSS random process (RP). **With:** Autocorrelation $R_x(\tau) = E[x(t)x(t \pm \tau)]$ for any time t, **Note:** x(t) 0-mean $\rightarrow R_x(\tau) = K_x(\tau)$ =covariance func. & lag τ . **WSS:** $E[x(t)x(s)] = R_x(t-s)$; not function of t and s separately.

DEF: Power spectral density (PSD) $S_x(\omega)$ is defined as: $S_x(\omega) = \mathcal{F}\{R_x(\tau)\} = \int_{-\infty}^{\infty} R_x(\tau)e^{-j\omega\tau}d\tau = 2\int_0^{\infty} R_x(\tau)\cos(\omega\tau)d\tau.$ $R_x(\tau) = \mathcal{F}^{-1}\{S_x(\omega)\} = \int_{-\infty}^{\infty} S_x(\omega)e^{j\omega\tau}\frac{d\omega}{2\pi} = \int_0^{\infty} S_x(\omega)\cos(\omega\tau)\frac{d\omega}{\pi}.$ **Assume:** x(t) is 2nd-order process: $E[x(t)^2] < \infty$ (except: white).

Properties of Power Spectral Density

- 1. $x(t) \text{ real} \rightarrow R_x(\tau) = R_x(-\tau) \rightarrow S_x(\omega) = S_x(-\omega)$ is real: $\mathcal{F}\{\text{real, even function}\}=\text{real, even function} \rightarrow \text{cosine xform.}$
- 2. $R_x(\tau)$ is positive semidefinite $\Leftrightarrow S_x(\omega) \ge 0$: $\sigma_{y(t)=\int f(t)x(t)dt}^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t)R_x(t-s)f^*(s)dt\,ds \ge 0.$

Proof: \Rightarrow : Suppose $\exists \omega_o$ so that $S_x(\omega_o) < 0$. Let $f(t) = e^{j\omega_o t}$. **Then:** $\sigma_y^2 = \int \int e^{j\omega_o t} R_x(t-s) e^{-j\omega_o s} dt \, ds = S_x(\omega_o) \cdot \infty < 0$.

Proof: \Leftarrow : For any real f(t), write $f(t) = \int F(\omega)e^{j\omega t}d\omega$.

Then: $\sigma_y^2 = \int |F(\omega)|^2 S_x(\omega) d\omega \ge 0$ using Parseval twice.

Note: Much simpler in the frequency domain! (just nonnegative)

3. See table of properties on p.471 of Stark and Woods.

4. Average power =
$$E[x(t)^2] = \sigma_{x(t)}^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_x(\omega) d\omega$$
.

- Note: "Power" is the *tendency* of random |x(t)| to be large: Larger variance \rightarrow broader pdf \rightarrow RV tends to be larger.
 - **EX:** Let v(t)=random voltage across a resistor $R = 1\Omega$. Average power= $E[v(t)^2]$; large despite E[v(t)] = 0.

PSD OF LINEAR TIME-INVARIANT EECS 501Fall 2000 (LTI) SYSTEM OUTPUT WITH WSS PROCESS INPUT

- 1. LTI system; impulse response $h(t):\delta(t) \to \overline{|h(t)|} \to h(t)$
- 2. LTI system has transfer function $H(\omega) = \overline{\mathcal{F}\{h(t)\}}$: $\cos(\omega t) \to \overline{|h(t)|} \to |H(\omega)| \cos(\omega t + ARG[H(\omega)])$
- 3. WSS random processes: $x(t) \to \overline{|h(t)|} \to y(t)$
- 4. IMPORTANT FORMULA: $S_y(\omega) = |H(\omega)|^2 S_x(\omega)$.

From: Take \mathcal{F} of $R_y(\tau) = \int \int h(u)h(v)R_x(\tau - u + v)du dv$. Note: Compare to random vectors: $y = Ax \rightarrow K_y = AK_xA^T$.

EX:
$$x(t) \rightarrow \overline{\left|\frac{dy}{dt} + ay(t) = x(t)\right|} \rightarrow y(t), \quad a > 0 \text{ so stable.}$$

 $x(t) \text{ is a 0-mean uncorrelated WSS RP. What is } S_y(\omega)?$

- 1. 0-mean WSS uncorrelated $\rightarrow R_x(\tau) = \delta(\tau) \rightarrow S_x(\omega) = 1.$ (Assume WLOG that the area under impulse is unity.)
- 2a. Impulse response: $h(t) = e^{-at}$ for $t \ge 0$; 0 otherwise.
- 2b. Transfer function: $H(\omega) = \mathcal{F}{h(t)} = 1/(j\omega + a)$.

3.
$$S_y(\omega) = |1/(j\omega + a)|^2 \cdot 1 = 1/(\omega^2 + a^2).$$

4. $R_y(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{(\omega^2 + a^2)^2} e^{j\omega\tau} d\omega = \frac{1}{2a} e^{-a|\tau|}.$

5.
$$\sigma_{u(t)}^2 = E[y(t)^2] = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{(u^2 + a^2)^2} d\omega = R_u(0) = \frac{1}{2\pi}$$

- 5. $\sigma_{y(t)}^2 = E[y(t)^2] = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{\omega^2 + a^2} d\omega = R_y(0) = \frac{1}{2a}$ 6. x(t) Gaussian $\rightarrow y(t)$ Gaussian $\rightarrow f_{y(t)}(Y) \sim N(0, \frac{1}{2a}).$
- 7. See p. 487 of Stark and Woods for more details.

EX: x(t) Gaussian; a = 5. Pr[1 < x(5) < 2 & 3 < x(6) < 4] = ?**Soln:** $Pr = \int_1^2 \int_3^4 \frac{1}{2\pi} \frac{1}{\sqrt{\det[K]}} e^{-\frac{1}{2}[X_5, X_6]K^{-1}[X_5, X_6]'} dX_6 dX_5$ where: $K = \frac{1}{10} \begin{bmatrix} 1 & e^{-5} \\ e^{-5} & 1 \end{bmatrix} \rightarrow det[K] = 0.01(1 - e^{-10}).$

Def: A 0-mean WSS RP x(t) is a *white* process if $S_x(\omega) = \sigma^2$ for some positive constant $\sigma^2 > 0$.

Comments on White Processes:

- 1. All frequencies ω equally represented \rightarrow "white" process: Red+orange+yellow+green+blue+violet+others=white if all colors (even not listed) present in equal strengths.
- 2. $R_x(\tau) = \sigma^2 \delta(\tau)$; x(t) is an uncorrelated process.
- 3. Power= $R_x(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \sigma^2 d\omega \to \infty!$ (impulse at $\tau = 0$).
 - a. Infinite power \rightarrow white process cannot exist physically!
 - b. NOT a 2nd-order process. Still: often used in models.
- 4. Implications of *continuous*-time uncorrelated RP:
 - a. Knowledge of x(7) does not help you predict x(7.000001);
 - b. Typical sample function (realization) of a white RP: \sim scatter plot (dust sprinkled on figure with t axis).
 - c. Takes *infinite power* to be able to move from x(7) to different value x(7.000001) in *almost-zero* time.

So What Good are White RPs If They Don't Exist?

1a. In modelling: Usually pass white x(t) through LTI system. 1b. Real-life systems have finite bandwidth: $\lim_{\omega \to \infty} |H(\omega)| = 0$. 1c. So $S_x(\omega)$ doesn't matter for large ω : gets filtered anyway. White input and bandlimited white input—same output.

2. A 2nd-order 0-mean WSS RP x(t) can be modelled as:

white $\operatorname{RP} \to \overline{|H(\omega) = \sqrt{S_x(\omega)}|} \to x(t)$. OR: $H(\omega)$ causal.

$$H(s) = \frac{\prod(s+z_i)(s+z_i^*)}{\prod(s+p_i)(s+p_i^*)} \to S_x(\omega) = \frac{\prod(\omega^2+z_i^2)(\omega^2+z_i^{*2})}{\prod(\omega^2+p_i^2)(\omega^2+p_i^{*2})} = \frac{\prod|\omega^2+z_i^2|^2}{\prod|\omega^2+p_i^2|^2}$$

using: $(j\omega+z)(-j\omega+z)(j\omega+z^*)(-j\omega+z^*) = (\omega^2+z^2)(\omega^2+z^{*2}).$

1. $x(t) \to \overline{|H(\omega)|} \to y(t), \quad H(\omega) = \begin{cases} 1, & \text{if } 3 \le |\omega| \le 3.001; \\ 0, & \text{otherwise.} \end{cases}$

2. Then
$$S_y(\omega) = \begin{cases} S_x(\omega) \approx S_x(3), & \text{if } 3 \le |\omega| \le 3.001; \\ 0, & \text{otherwise.} \end{cases}$$

3. Then the average power $E[y(t)^2]$ in output y(t) is:

$$E[y(t)^2] = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_y(\omega) d\omega = \frac{2}{2\pi} \int_{3}^{3.001} S_x(\omega) d\omega \approx \frac{0.001}{\pi} S_x(3).$$

- 4. Interpretation: $S_x(3)$ is the average power per unit bilateral bandwidth in x(t) at $\omega = 3$:
 - a. **Bilateral:** components at both $\omega = 3$ and $\omega = -3$;
 - b. $\frac{2\Delta}{2\pi}S_x(\omega_o)$ is the average power in random process x(t) in the frequency band of width $\Delta: \omega_o \le \omega \le \omega_o + \Delta$.
 - c. Units: x(t) volts $\rightarrow \frac{1}{2\pi}S_x(\omega) \frac{volts^2}{rad/sec}$; $S_x(f) \frac{volts^2}{Hertz}$.
- 5. $S_x(\omega)$ must be multiplied by frequency to get power in a frequency band; it is a power spectral **density**:
 - a. $S_x(\omega_o)\frac{2\Delta}{2\pi} = Power in [\omega_o \le \omega \le \omega_o + \Delta].$
 - b. $S_x(f_o)2\ddot{\Delta} = Power in [f_o \le f \le f_o + \Delta].$
 - c. Compare: $f_x(X)\Delta = Pr[X \le x \le X + \Delta].$
- 6. This interpretation makes the following evident:
 - a. $S_x(\omega) \ge 0$: otherwise power in some frequency band would be negative! **Compare to:** $f_x(X) \ge 0$.
 - b. Total average power= $E[x(t)^2] = \int_{-\infty}^{\infty} S_x(f) df$. **Compare to:** Total probability= $\int_{-\infty}^{\infty} f_x(X) dX = 1$.

- 1. Recall we can *decorrelate* a random N-vector x as follows:
 - a. Covariance matrix K_x has N eigenvalues λ_i and eigenvectors $\phi_i, i = 1 \dots N$, where $K_x \phi_i = \lambda_i \phi_i$.
 - b. Let $A = [\phi_1 \dots \phi_N]^T$ (don't forget transpose!) and y = Ax. Then: $y_i = \phi_i^T x = \phi_i \cdot x = \sum_{j=1}^N (\phi_i)_j x_j$.
 - c. Then $K_y = AK_x A^T = DIAG[\lambda_1 \dots \lambda_N]$ and then $E[y_i y_j] = \lambda_i \delta(i-j) \to \{y_i\}$ have been decorrelated.

d.
$$y = Ax \rightarrow x = A^T y \rightarrow x = \sum_{i=1}^N y_i \phi_i$$
:
x=sum of uncorrelated RVs×eigenvectors

- 2. Now try this for 2nd-order 0-mean WSS processes:
 - a. Eigenfunctions of LTI systems: $\phi(t) = e^{j\omega t}$: Means

b.
$$e^{j\omega t} \to \overline{|H(\omega)|} \to H(\omega)e^{j\omega t} = |H(\omega)|e^{(j\omega t + ARG[H(\omega)])}$$
.

- 3. x(t) is a real-valued 2nd-order 0-mean WSS process.
 - a. Define RVs $X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}$, for all ω .
 - b. Then $\{X(\omega)\}$ are uncorrelated random variables: $E[X(\omega_1)X^*(\omega_2)] = 2\pi S_x(\omega_1)\delta(\omega_1 - \omega_2).$
- 4. Spectral interpretation of 2nd-order WSS RPs: $x(t) = \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} \frac{d\omega}{2\pi} : \int \text{uncorrelated RVs} \times \text{eigenfunctions.}$
- 5. We have for *finite but large* T and interval $\left[-\frac{T}{2}, \frac{T}{2}\right]$:

K-L:
$$x(t) = \sum_{n=-\infty}^{\infty} x_n \frac{1}{\sqrt{T}} e^{j2\pi nt/T}, \quad |t| \le T/2 \to \infty,$$

- where: $x_n = \int_{-T/2}^{T/2} x(t) \frac{1}{\sqrt{T}} e^{-j2\pi nt/T} dt$ for integers n.
- **Then:** $E[x_i x_j] = S_x (2\pi i/T) \delta(i-j) \rightarrow \{x_n\}$ uncorrelated.
- **DEF:** This is *Karhunen-Loeve expansion* for WSS processes.

Works: $S_x(\omega) \approx 0$ for $|\omega| > B \rightarrow \text{need } TB >> 1$.

EECS 501 SPECTRAL INTERPRETATION Fall 2000

- 1. $E[X(\omega_1)X^*(\omega_2)] = E[\int x(t)e^{-j\omega_1 t}dt \int x(s)e^{j\omega_2 s}ds] = \int \int E[x(t)x(s)]e^{-j(\omega_1 t \omega_2 s)}dt \, ds. \ E[x(t)x(s)] = R_x(t-s).$
- 2. Change variables: $t, s \to \tau = t s, z = t + s : |J| = 2.$ $E[X(\omega_1)X^*(\omega_2)] = \int \int R_x(\tau)e^{-j[\omega_1(\tau+z)+\omega_2(\tau-z)]/2} \frac{d\tau \, dz}{2}$ $= \int R_x(\tau)e^{-j(\frac{\omega_1+\omega_2}{2})\tau} d\tau \int e^{-j(\frac{\omega_1-\omega_2}{2})z} (\frac{dz}{2}) [\mathcal{F}\{1\} = 2\pi\delta(\omega)]$ $= 2\pi S_x \left(\frac{\omega_1+\omega_2}{2}\right) \delta(\omega_1-\omega_2) = 2\pi S_x(\omega_1)\delta(\omega_1-\omega_2).$ QED.

Gaussian RPs and The Distribution of $X(\omega)$

- 1. Let x(t) be Gaussian RP $\rightarrow X(\omega)$ Gaussian RVs:
 - a. $Re[X(\omega)]$ and $Im[X(\omega)]$ are Gaussian RVs;
 - b. $|X(\omega)|$ Rayleigh RVs; $ARG[X(\omega)]$ uniform RVs. **Rayleigh pdf:** $f_z(Z) = \frac{Z}{\sigma^2} e^{-Z^2/(2\sigma^2)}, Z \ge 0$. p. 138.
 - 2a. Physical Let $H(\omega) = \delta(\omega \omega_o) + \delta(\omega + \omega_o)$: interpretation: $H(\omega)$ passes ONLY frequency ω_o .
 - b. $x(t) \to \overline{|H(\omega)|} \to y(t); \quad H(\omega)$ narrowband.
- 3. All possible sample functions of RP x(t) are filtered.
 - a. $y(t) = A\cos(\omega_o t) + B\sin(\omega_o t)$ for RVs A, B.
 - b. Jointly Gaussian RVs $A, B \sim N(0, S_x(\omega_o)\pi\infty)$.

REF: Papoulis, 3^{rd} ed. (1991), pp. 416-418.

Let: x(t) and y(t) be real-valued 0-mean jointly WSS RPs.

with: Cross-correlation $R_{xy}(\tau) = E[x(t)y(t-\tau)]$ for any t.

Means: $E[x(t)y(s)] = R_{xy}(t-s)$; jointly WSS \rightarrow not t, s separately.

Def: The Cross-Spectral Density $S_{xy}(\omega)$ is defined as: $S_{xy}(\omega) = \mathcal{F}\{R_{xy}(\tau)\}; \quad R_{xy}(\tau) = \mathcal{F}^{-1}\{S_{xy}(\omega)\}.$

Properties of The Cross-Spectral Density

1.
$$R_{yx}(\tau) = R_{xy}(-\tau) \to S_{yx}(\omega) = S_{xy}(-\omega) = S_{xy}^*(\omega).$$

- 2. $S_{xy}(\omega)$, unlike $S_x(\omega)$, is not a real or even function.
- 3. WSS random processes: $x(t) \to \overline{|H(\omega)|} \to y(t)$ FORMULA: $S_{yx}(\omega) = H(\omega)S_x(\omega)$ (note S_{yx} , not S_{xy}): Take \mathcal{F} of $R_{yx}(\tau) = \int h(u)R_x(\tau - u)du$.
- 4. From #1 and #3 we have $S_{xy}(\omega) = H^*(\omega)S_x(\omega)$.
- 5. Exchange x(t), y(t) and replace $H(\omega)$ with $\frac{1}{H(\omega)}$: $S_{yx}(\omega) = \frac{1}{H^*(\omega)} S_y(\omega) \to S_y(\omega) = |H(\omega)|^2 S_x(\omega)!$

Example of Cross-Spectral Density

Let $x(t) \to \overline{|F(\omega)|} \to y(t)$ and $x(t) \to \overline{|G(\omega)|} \to z(t)$ Compute the cross-spectral density $S_{yz}(\omega)$. Solution:

- 1. x(t), y(t), z(t) are real-valued 0-mean jointly WSS RPs.
- 2. $y(t) = \int f(u)x(t-u)du$ and $z(s) = \int g(v)x(s-v)dv \rightarrow dv$
- 3. $E[y(t)z(s)] = \int \int f(u)g(v)E[x(t-u)x(s-v)]du dv \rightarrow R_{yz}(t-s) = \int \int f(u)g(v)R_x(t-s-u+v)du dv \rightarrow S_{yz}(\omega) = F(\omega)G^*(\omega)S_x(\omega).$ Neat formula! (I think so)
- 4. Passbands of $F(\omega)$ and $G(\omega)$ don't overlap $\rightarrow R_{yz}(\tau) = 0$. y(t) and z(t) (different frequency components of x(t)) are *uncorrelated* \rightarrow spectral interpretation of WSS RPs.

Infinite Smoothing Filter for Signal in Noise:

- 1. y(t), x(t), v(t) are 2nd-order 0-mean jointly WSS RPs. a. Observe y(t) = x(t) + v(t) where E[x(t)v(s)] = 0. b. x(t)=signal, v(t)=noise, y(t)=noisy data.
- 2. We have the following (cross)covariance functions:

a.
$$R_{xy} = E[x(t)y(s)] = E[x(t)(x(s) + v(s))] = R_x.$$

b.
$$R_y = E[(x(t) + v(t))(x(s) + v(s))] = R_x + R_v.$$

3. GOAL: Compute LLSE of x(t) from $\{y(s), -\infty < s < \infty\}$. NOTE: x(t), v(t) jointly Gaussian RPs $\rightarrow \hat{x}_{LLSE} = \hat{x}_{LS}$.

4. LEMMA: 0-mean uncorrelated
$$\{x(i)\}$$
 and $\{v(i)\}$.
Observe $y(n) = x(n) + v(n)$ where $E[x(i)v(j)] = 0$.
Then LLSE of $x(i)$ from $\{y(j), -\infty < j < \infty\}$ is
 $\hat{x} = K_{xy}K_y^{-1}y = K_x(K_x + K_v)^{-1}y$
 $= DIAG[\sigma_{x(i)}^2]DIAG[\sigma_{x(i)}^2 + \sigma_{v(i)}^2]^{-1}y$
 $\rightarrow \hat{x}(i) = \frac{\sigma_{x(i)}^2}{\sigma_{x(i)}^2 + \sigma_{v(i)}^2}y(i)$ where y =vector of $\{y(j)\}$.
Problem decouples since the $\{y(j)\}$ are uncorrelated.

5. Write $x(t) = \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} \frac{d\omega}{2\pi}$; write y(t), v(t) similarly. Apply LEMMA to RVs $X(\omega), Y(\omega), V(\omega)$. Solution:

$$y(t) \to \overline{\left|\frac{S_x(\omega)}{S_x(\omega) + S_v(\omega)}\right|} \to \hat{x}(t).$$

- 6. Comments:
 - a. More insightful than Recitation derivation!
 - b. Shows significance of decorrelation=prewhitening: Eliminates need to compute K_y^{-1} (saves much work).
 - c. See Stark and Woods p. 553 for more details.