
EECS 501 POWER SPECTRAL DENSITY Fall 2000

Given: x(t) is a real-valued 0-mean WSS random process (RP).
With: Autocorrelation Rx(τ) = E[x(t)x(t± τ)] for any time t,
Note: x(t) 0-mean→ Rx(τ) = Kx(τ)=covariance func. & lag τ .
WSS: E[x(t)x(s)] = Rx(t−s); not function of t and s separately.

DEF: Power spectral density (PSD) Sx(ω) is defined as:
Sx(ω) = F{Rx(τ)} =

∫∞
−∞Rx(τ)e−jωτdτ = 2

∫∞
0

Rx(τ) cos(ωτ)dτ .
Rx(τ) = F−1{Sx(ω)} =

∫∞
−∞ Sx(ω)ejωτ dω

2π =
∫∞
0

Sx(ω) cos(ωτ)dω
π .

Assume: x(t) is 2nd-order process: E[x(t)2] < ∞ (except: white).

Properties of Power Spectral Density

1. x(t) real→ Rx(τ) = Rx(−τ) → Sx(ω) = Sx(−ω) is real:
F{real, even function}=real,even function→cosine xform.

2. Rx(τ) is positive semidefinite ⇔ Sx(ω) ≥ 0:

σ2

y(t)=
∫

f(t)x(t)dt
=

∫∞
−∞

∫∞
−∞ f(t)Rx(t− s)f∗(s)dt ds ≥ 0.

Proof: ⇒: Suppose ∃ωo so that Sx(ωo) < 0. Let f(t) = ejωot.
Then: σ2

y =
∫ ∫

ejωotRx(t− s)e−jωosdt ds = Sx(ωo) · ∞ < 0.

Proof: ⇐: For any real f(t), write f(t) =
∫

F (ω)ejωtdω.
Then: σ2

y =
∫ |F (ω)|2Sx(ω)dω ≥ 0 using Parseval twice.

Note: Much simpler in the frequency domain! (just nonnegative)

3. See table of properties on p.471 of Stark and Woods.

4. Average power = E[x(t)2] = σ2
x(t) = 1

2π

∫∞
−∞ Sx(ω)dω.

Note: “Power” is the tendency of random |x(t)| to be large:
Larger variance→broader pdf→RV tends to be larger.

EX: Let v(t)=random voltage across a resistor R = 1Ω.
Average power=E[v(t)2]; large despite E[v(t)] = 0.



EECS 501 PSD OF LINEAR TIME-INVARIANT Fall 2000
(LTI) SYSTEM OUTPUT WITH WSS PROCESS INPUT

1. LTI system; impulse response h(t):δ(t) → |h(t)| → h(t)
2. LTI system has transfer function H(ω) = F{h(t)}:

cos(ωt) → |h(t)| → |H(ω)| cos(ωt + ARG[H(ω)])
3. WSS random processes: x(t) → |h(t)| → y(t)

4. IMPORTANT FORMULA: Sy(ω) = |H(ω)|2Sx(ω).
From: Take F of Ry(τ) =

∫ ∫
h(u)h(v)Rx(τ − u + v)du dv.

Note: Compare to random vectors: y = Ax → Ky = AKxAT .

EX: x(t) → |dy
dt + ay(t) = x(t)| → y(t), a > 0 so stable.

x(t) is a 0-mean uncorrelated WSS RP. What is Sy(ω)?

1. 0-mean WSS uncorrelated→ Rx(τ) = δ(τ) → Sx(ω) = 1.
(Assume WLOG that the area under impulse is unity.)

2a. Impulse response: h(t) = e−at for t ≥ 0; 0 otherwise.
2b. Transfer function: H(ω) = F{h(t)} = 1/(jω + a).

3. Sy(ω) = |1/(jω + a)|2 · 1 = 1/(ω2 + a2).

4. Ry(τ) = 1
2π

∫∞
−∞

1
ω2+a2 ejωτdω = 1

2ae−a|τ |.

5. σ2
y(t) = E[y(t)2] = 1

2π

∫∞
−∞

1
ω2+a2 dω = Ry(0) = 1

2a

6. x(t) Gaussian→ y(t) Gaussian→ fy(t)(Y ) ∼ N(0, 1
2a ).

7. See p. 487 of Stark and Woods for more details.

EX: x(t) Gaussian; a = 5. Pr[1 < x(5) < 2& 3 < x(6) < 4]=?

Soln: Pr =
∫ 2

1

∫ 4

3
1
2π

1√
det[K]

e−
1
2 [X5,X6]K

−1[X5,X6]
′
dX6 dX5

where: K = 1
10

[
1 e−5

e−5 1

]
→ det[K] = 0.01(1− e−10).



EECS 501 WHITE PROCESSES Fall 2000

Def: A 0-mean WSS RP x(t) is a white process if
Sx(ω) = σ2 for some positive constant σ2 > 0.

Comments on White Processes:
1. All frequencies ω equally represented→”white” process:

Red+orange+yellow+green+blue+violet+others=white
if all colors (even not listed) present in equal strengths.

2. Rx(τ) = σ2δ(τ); x(t) is an uncorrelated process.
3. Power=Rx(0) = 1

2π

∫∞
−∞ σ2dω →∞! (impulse at τ = 0).

a. Infinite power→ white process cannot exist physically!
b. NOT a 2nd-order process. Still: often used in models.

4. Implications of continuous-time uncorrelated RP:
a. Knowledge of x(7) does not help you predict x(7.000001);
b. Typical sample function (realization) of a white RP:
∼scatter plot (dust sprinkled on figure with t axis).

c. Takes infinite power to be able to move from x(7)
to different value x(7.000001) in almost-zero time.

So What Good are White RPs If They Don’t Exist?

1a. In modelling: Usually pass white x(t) through LTI system.
1b. Real-life systems have finite bandwidth: lim

ω→∞ |H(ω)| = 0.
1c. So Sx(ω) doesn’t matter for large ω: gets filtered anyway.

White input and bandlimited white input→same output.
2. A 2nd-order 0-mean WSS RP x(t) can be modelled as:

white RP→ |H(ω) =
√

Sx(ω)| → x(t). OR: H(ω) causal.

H(s) =
∏

(s+zi)(s+z∗i )∏
(s+pi)(s+p∗

i
)
→ Sx(ω) =

∏
(ω2+z2

i )(ω2+z∗2i )∏
(ω2+p2

i
)(ω2+p∗2

i
)

=
∏
|ω2+z2

i |2∏
|ω2+p2

i
|2 .

using: (jω+z)(−jω+z)(jω+z∗)(−jω+z∗) = (ω2+z2)(ω2+z∗2).



EECS 501 INTERPRETATION OF PSD Fall 2000

1. x(t) → |H(ω)| → y(t), H(ω) =
{

1, if 3 ≤ |ω| ≤ 3.001;
0, otherwise.

2. Then Sy(ω) =
{

Sx(ω) ≈ Sx(3), if 3 ≤ |ω| ≤ 3.001;
0, otherwise.

3. Then the average power E[y(t)2] in output y(t) is:

E[y(t)2] = 1
2π

∫∞
−∞ Sy(ω)dω = 2

2π

∫ 3.001

3
Sx(ω)dω ≈ 0.001

π Sx(3).

4. Interpretation: Sx(3) is the average power
per unit bilateral bandwidth in x(t) at ω = 3:

a. Bilateral: components at both ω = 3 and ω = −3;
b. 2∆

2π Sx(ωo) is the average power in random process x(t)
in the frequency band of width ∆: ωo ≤ ω ≤ ωo + ∆.

c. Units: x(t) volts→ 1
2π Sx(ω) volts2

rad/sec ; Sx(f) volts2

Hertz .

5. Sx(ω) must be multiplied by frequency to get power
in a frequency band; it is a power spectral density:

a. • Sx(ωo) 2∆
2π = Power in [ωo ≤ ω ≤ ωo + ∆].

b. • Sx(fo)2∆ = Power in [fo ≤ f ≤ fo + ∆].
c. Compare: fx(X)∆ = Pr[X ≤ x ≤ X + ∆].

6. This interpretation makes the following evident:
a. Sx(ω) ≥ 0: otherwise power in some frequency band

would be negative! Compare to: fx(X) ≥ 0.
b. Total average power=E[x(t)2] =

∫∞
−∞ Sx(f)df .

Compare to: Total probability=
∫∞
−∞ fx(X)dX = 1.



EECS 501 SPECTRAL INTERPRETATION Fall 2000

1. Recall we can decorrelate a random N-vector x as follows:
a. Covariance matrix Kx has N eigenvalues λi and

eigenvectors φi, i = 1 . . . N , where Kxφi = λiφi.
b. Let A = [φ1 . . . φN ]T (don’t forget transpose!) and

y = Ax. Then: yi = φT
i x = φi · x =

∑N
j=1(φi)jxj .

c. Then Ky = AKxAT = DIAG[λ1 . . . λN ] and then
E[yiyj ] = λiδ(i− j) → {yi} have been decorrelated.

d. y = Ax → x = AT y → x =
∑N

i=1 yiφi:
x=sum of uncorrelated RVs×eigenvectors.

2. Now try this for 2nd-order 0-mean WSS processes:
a. Eigenfunctions of LTI systems: φ(t) = ejωt: Means

b. ejωt → |H(ω)| → H(ω)ejωt = |H(ω)|e(jωt+ARG[H(ω)]).

3. x(t) is a real-valued 2nd-order 0-mean WSS process.
a. Define RVs X(ω) =

∫∞
−∞ x(t)e−jωt, for all ω.

b. Then {X(ω)} are uncorrelated random variables:

E[X(ω1)X∗(ω2)] = 2πSx(ω1)δ(ω1 − ω2).

4. Spectral interpretation of 2nd-order WSS RPs:

x(t) =
∫∞
−∞X(ω)ejωt dω

2π :
∫

uncorrelated RVs×eigenfunctions.

5. We have for finite but large T and interval [−T
2 , T

2 ]:

K-L: x(t) =
∑∞

n=−∞ xn
1√
T

ej2πnt/T , |t| ≤ T/2 →∞,

where: xn =
∫ T/2

−T/2
x(t) 1√

T
e−j2πnt/T dt for integers n.

Then: E[xixj ] = Sx(2πi/T )δ(i− j) → {xn} uncorrelated.

DEF: This is Karhunen-Loeve expansion for WSS processes.

Works: Sx(ω) ≈ 0 for |ω| > B → need TB >> 1.



EECS 501 SPECTRAL INTERPRETATION Fall 2000

1. E[X(ω1)X∗(ω2)] = E[
∫

x(t)e−jω1tdt
∫

x(s)ejω2sds] =∫ ∫
E[x(t)x(s)]e−j(ω1t−ω2s)dt ds. E[x(t)x(s)] = Rx(t− s).

2. Change variables: t, s → τ = t− s, z = t + s : |J | = 2.

E[X(ω1)X∗(ω2)] =
∫ ∫

Rx(τ)e−j[ω1(τ+z)+ω2(τ−z)]/2 dτ dz
2

=
∫

Rx(τ)e−j(ω1+ω2
2 )τdτ

∫
e−j(ω1−ω2

2 )z(dz
2 )[F{1} = 2πδ(ω)]

= 2πSx

(
ω1+ω2

2

)
δ(ω1 − ω2) = 2πSx(ω1)δ(ω1 − ω2). QED.

Gaussian RPs and The Distribution of X(ω)

1. Let x(t) be Gaussian RP→ X(ω) Gaussian RVs:

a. Re[X(ω)] and Im[X(ω)] are Gaussian RVs;

b. |X(ω)| Rayleigh RVs; ARG[X(ω)] uniform RVs.
Rayleigh pdf: fz(Z) = Z

σ2 e−Z2/(2σ2), Z ≥ 0. p. 138.

2a. Physical Let H(ω) = δ(ω − ωo) + δ(ω + ωo):
interpretation: H(ω) passes ONLY frequency ωo.

b. x(t) → |H(ω)| → y(t); H(ω) narrowband.

3. All possible sample functions of RP x(t) are filtered.

a. y(t) = A cos(ωot) + B sin(ωot) for RVs A,B.
b. Jointly Gaussian RVs A,B ∼ N(0, Sx(ωo)π∞).

REF: Papoulis, 3rd ed. (1991), pp. 416-418.
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Let: x(t) and y(t) be real-valued 0-mean jointly WSS RPs.
with: Cross-correlation Rxy(τ) = E[x(t)y(t− τ)] for any t.

Means: E[x(t)y(s)] = Rxy(t−s); jointly WSS→not t, s separately.

Def: The Cross-Spectral Density Sxy(ω) is defined as:
Sxy(ω) = F{Rxy(τ)}; Rxy(τ) = F−1{Sxy(ω)}.

Properties of The Cross-Spectral Density

1. Ryx(τ) = Rxy(−τ) → Syx(ω) = Sxy(−ω) = S∗xy(ω).

2. Sxy(ω), unlike Sx(ω), is not a real or even function.

3. WSS random processes: x(t) → |H(ω)| → y(t)

FORMULA: Syx(ω) = H(ω)Sx(ω) (note Syx, not Sxy):
Take F of Ryx(τ) =

∫
h(u)Rx(τ − u)du.

4. From #1 and #3 we have Sxy(ω) = H∗(ω)Sx(ω).

5. Exchange x(t), y(t) and replace H(ω) with 1
H(ω) :

Syx(ω) = 1
H∗(ω)Sy(ω) → Sy(ω) = |H(ω)|2Sx(ω)!

Example of Cross-Spectral Density

Let x(t) → |F (ω)| → y(t) and x(t) → |G(ω)| → z(t)
Compute the cross-spectral density Syz(ω). Solution:

1. x(t), y(t), z(t) are real-valued 0-mean jointly WSS RPs.
2. y(t) =

∫
f(u)x(t− u)du and z(s) =

∫
g(v)x(s− v)dv →

3. E[y(t)z(s)] =
∫ ∫

f(u)g(v)E[x(t− u)x(s− v)]du dv →
Ryz(t− s) =

∫ ∫
f(u)g(v)Rx(t− s− u + v)du dv →

Syz(ω) = F (ω)G∗(ω)Sx(ω). Neat formula! (I think so)
4. Passbands of F (ω) and G(ω) don’t overlap→ Ryz(τ) = 0.

y(t) and z(t) (different frequency components of x(t))
are uncorrelated→spectral interpretation of WSS RPs.
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Infinite Smoothing Filter for Signal in Noise:

1. y(t), x(t), v(t) are 2nd-order 0-mean jointly WSS RPs.
a. Observe y(t) = x(t) + v(t) where E[x(t)v(s)] = 0.
b. x(t)=signal, v(t)=noise, y(t)=noisy data.

2. We have the following (cross)covariance functions:
a. Rxy = E[x(t)y(s)] = E[x(t)(x(s) + v(s))] = Rx.
b. Ry = E[(x(t) + v(t))(x(s) + v(s))] = Rx + Rv.

3. GOAL: Compute LLSE of x(t) from {y(s),−∞ < s < ∞}.
NOTE: x(t), v(t) jointly Gaussian RPs→ x̂LLSE = x̂LS .

4. LEMMA: 0-mean uncorrelated {x(i)} and {v(i)}.
Observe y(n) = x(n) + v(n) where E[x(i)v(j)] = 0.
Then LLSE of x(i) from {y(j),−∞ < j < ∞} is
x̂ = KxyK−1

y y = Kx(Kx + Kv)−1y

= DIAG[σ2
x(i)]DIAG[σ2

x(i) + σ2
v(i)]

−1y

→ x̂(i) =
σ2

x(i)

σ2
x(i)+σ2

v(i)
y(i) where y=vector of {y(j)}.

Problem decouples since the {y(j)} are uncorrelated.

5. Write x(t) =
∫∞
−∞X(ω)ejωt dω

2π ; write y(t), v(t) similarly.
Apply LEMMA to RVs X(ω), Y (ω), V (ω). Solution:

y(t) → | Sx(ω)
Sx(ω)+Sv(ω) | → x̂(t).

6. Comments:
a. More insightful than Recitation derivation!
b. Shows significance of decorrelation=prewhitening:

Eliminates need to compute K−1
y (saves much work).

c. See Stark and Woods p. 553 for more details.


