So far: Used sample space Ω and event space \mathcal{A} to describe outcome.
Now: Use a number to describe the outcome of an experiment.
DEF: A random variable x is a mapping $x: \Omega \rightarrow \mathcal{R}$ ($\Omega=$ sample space). x associates a number with each outcome of an experiment.
EX: Flip coin 100 times. $x=(\# \text { heads })^{3} ; \quad y=\#$ heads in $1^{\text {st }} 10$ flips.
Note: Numbers represent outcomes, so sets of numbers represent events.
Q: For what subsets $F \subset \mathcal{R}$ can we compute $\operatorname{Pr}[x \in F]$?
A1: Induced prob. space: $\operatorname{Pr}[x \in F]=\operatorname{Pr}[\omega \in \Omega: x(\omega) \in F]=\operatorname{Pr}\left[x^{-1}(F)\right]$. Probability space $(\Omega, \mathcal{A}, \operatorname{Pr})$ and random variable x define (preimage) induced probability space $\left(\mathcal{R}, \mathcal{A}_{x}, P_{x}\right)$ where $P_{x}[F]=\operatorname{Pr}\left[x^{-1}(F)\right]$.

EX: Suppose $F \in \mathcal{A}_{x} \rightarrow P_{x}[F]=0$ or 1 . Prove x=constant with prob. 1.
Huh? Heuristically, each sample point ω of Ω maps to same constant c.
Proof: $1=\operatorname{Pr}[\Omega]=\operatorname{Pr}\left[x^{-1}(\mathcal{R})\right]=\operatorname{Pr}\left[x^{-1}\left(\cup_{n=-\infty}^{\infty}[n, n+1)\right)\right]$
$=\sum_{n=-\infty}^{\infty} \operatorname{Pr}\left[x^{-1}([n, n+1))\right]=\sum_{n=-\infty}^{\infty} P_{x}[[n, n+1)]$.
But: Given that $P_{x}[[n, n+1)]=0$ or 1 . So $P_{x}[[N, N+1)]=1$ for some N.
Repeat: $1=P_{x}[[N, N+1)]=P_{x}\left[\left[N, \frac{2 N+1}{2}\right)\right]+P_{x}\left[\left[\frac{2 N+1}{2}, N+1\right)\right]$. One of two $=1$.
Continue: Construct decreasing sequence of half-open intervals $I_{k}=\left[\frac{N_{k}}{2^{k}}, \frac{N_{k}+1}{2^{k}}\right)$ such that $I_{0} \supset I_{1} \supset I_{2} \supset \cdots$ and $P_{x}\left[I_{k}\right]=\operatorname{Pr}\left[x^{-1}\left(I_{k}\right)\right]=1$ for all k.

Then: Cont of prob: $\operatorname{Pr}[x=c]=\operatorname{Pr}\left[x^{-1}(\{c\})\right]=P_{x}\left[\lim I_{k}\right]=\lim P_{x}\left[I_{k}\right]=1$, where c is the constant such that $c \in I_{k}$ for all k. QED.

But: Can only do this for $\left\{F \subset \mathcal{R}: x^{-1}(F) \in \mathcal{A}\right\}=$ domain of Pr.
A2: If know $\operatorname{Pr}[x \in(a, b]]$, can compute $\operatorname{Pr}[x \in F]$ for any Borel set F.
i.e.: The induced probability space is $\left(\mathcal{R}, \mathcal{B}, P_{x}\right)$ where $\mathcal{B}=$ Borel sets.

DEF: $F_{x}(X)=\operatorname{Pr}[x \leq X]=$ probability distribution function (PDF).
Then: $\operatorname{Pr}[x \in(a, b]]=F_{x}(b)-F_{x}(a)$. Can compute $\operatorname{Pr}[x \in F]$ for Borel sets.
Note: $F_{x}(X)$ or $P_{x}(X)$ or $F_{X}(x)$ or "cumulative dist. function" (CDF).
Props: $F_{x}(X)$ is nondecreasing: $x_{1}<x_{2} \rightarrow F_{x}\left(x_{1}\right) \leq F_{x}\left(x_{2}\right)$ (may be level).
$\lim _{X \rightarrow-\infty} F_{x}(X)=\operatorname{Pr}[x \leq-\infty]=0 ; \quad \lim _{X \rightarrow \infty} F_{x}(X)=\operatorname{Pr}[x \leq \infty]=1$.
$F_{x}(X)$ is continuous from the right: $\lim _{\epsilon \rightarrow 0^{+}} F_{x}(X+\epsilon)=F_{x}(X)$.

Q1: In how many different ways can N objects be ordered?
A1: $N!=N(N-1)(N-2) \cdots(2)(1) \simeq N^{N} e^{-N} \sqrt{2 \pi N}$ (Stirling's formula).
Q2: In how many ways can K objects chosen from N be ordered?
A2: $P_{K}^{N}=N(N-1)(N-2) \cdots(N-K+1)=N!/(N-K)$! (choose K).
Q3: In how many ways can K objects be chosen from N without ordering?
A3: No longer want K! ordering of the K objects chosen, so $C_{K}^{N}=\frac{1}{K!} P_{K}^{N}$. $C_{K}^{N}=N(N-1) \cdots(N-K+1) / K!=\frac{N!}{K!(N-K)!}=\binom{N}{K}=\binom{N}{N-K}$.
Q4: A class of 88 students is divided into 4 recitations of 22 students each. In how many ways can this be done?
A4: $\binom{88}{22}\binom{66}{22}\binom{44}{22}\binom{22}{22}=\frac{88!}{(22!)^{4}}=1.162 \times 10^{50}$.
Q5: Multinomial formula: $\left(\sum_{i=1}^{M} a_{i}\right)^{N}=\underbrace{\sum_{i_{1}} \cdots \sum_{i_{M-1}}}_{i_{1}+\cdots+i_{M}=N} \frac{N!}{i_{1}!\cdots i_{M}!} a_{1}^{i_{1}} \ldots a_{M}^{i_{M}}$.
A5: See Stark and Woods pp. 22-36 for a nice treatment of combinatorics.
Given: An urn contains 3 red balls and 7 black balls (10 balls total). What is the probability that 2 of 6 balls picked out of the urn are red?
Q1: If balls are picked without replacement (simultaneously), use the hypergeometric formula: $\operatorname{Pr}=\binom{3}{2}\binom{7}{4} /\binom{10}{6}$.
Q2: If balls are picked with replacement (one at a time), use the binomial formula: $\operatorname{Pr}=\binom{6}{2}\left(\frac{3}{10}\right)^{2}\left(\frac{7}{10}\right)^{4}$.
Δ : Suppose first ball picked is red. $\operatorname{Pr}[$ second ball picked is red $]=$?
with replacement: still $\frac{3}{10}$. without replacement: now $\frac{2}{9}$.
Then: This leads to hypergeometric formula. Note multiplication commutes.
DEF: $f_{x}(X)=\frac{d F_{x}(X)}{d X}=$ probability density function (pdf) (vs. distribution).
Then: $\operatorname{Pr}[a<x \leq b]=\int_{a}^{b} f_{x}(X) d X$. pdf exists only if PDF differentiable.
Note: As $\delta X \rightarrow 0, \operatorname{Pr}[X<x \leq X+\delta X]=f_{x}(X) \delta X . f_{x}(X)$ NOT a prob!
Props: $f_{x}(X) \geq 0 ;>1$ OK; $\quad \int_{-\infty}^{\infty} f_{x}(X) d X=1 ; \quad \operatorname{Pr}[A]=\int_{A} f_{x}(X) d X$.
Note: $\operatorname{Pr}[x=b] \neq 0 \rightarrow f_{x}(X)$ has impulse at $x=b$; include in $\int_{a}^{b} f_{x}(X) d X$.

