Given: Random process $x(t)=A \cos (\omega t+\theta)$ where ω is a known constant. Random: A and θ are independent random variables. $f_{\theta}(\Theta)=\frac{1}{2 \pi}, 0<\Theta<2 \pi$. Goal: Compute the mean $E[x(t)]$ and covariance $K_{x}(t, s)$ functions of $x(t)$.

Mean: $E[x(t)]=E[A] E[\cos (\omega t+\theta)]=E[A] \int_{0}^{2 \pi} \frac{1}{2 \pi} \cos (\omega t+\Theta) d \Theta=0$.
Covar- $K_{x}(t, s)=R_{x}(t, s)=E[x(t) x(s)]=E\left[A^{2}\right] E[\cos (\omega t+\theta) \cos (\omega s+\theta)]$
iance: $=E\left[A^{2}\right] \frac{1}{2} E[\cos (\omega(t+s)+2 \theta)+\cos (\omega(t-s))]=\frac{1}{2} E\left[A^{2}\right] \cos (\omega(t-s))$.
Note: (1) $x(t)$ WSS; (2) Need only $E\left[A^{2}\right]$, not $f_{a}(A)$; (3) Can have $E[A] \neq 0$.
Now: Let $A>0$ be a known constant. Compute $f_{x(t)}(X)$ and $f_{x(t) \mid x(s)}\left(X_{t} \mid X_{s}\right)$.
Note: Sample functions are sinusoids with frequency ω and amplitude A.
Different sample points \rightarrow different phases \rightarrow different sample functions.
EX: $x(t)$ is ideal oscillator with known amp. and freq. but random phase.
$f_{x(t)}(X): t$ is fixed \rightarrow this is a derived distribution problem from θ to $x(\theta)$.
Jaco-: $f_{x}(X)=\left.\sum_{1}^{2}\left(1 /\left|\frac{d x}{d \theta}\right|\right) f_{\theta}\left(\Theta_{i}\right)\right|_{\Theta_{i}=x^{-1}(X)}$, where $\frac{d x}{d \theta}=\frac{d}{d \theta} A \cos (\omega t+\theta)$
bian: $=-A \sin (\omega t+\theta)= \pm A \sqrt{1-\cos ^{2}(\omega t+\theta)}= \pm \sqrt{A^{2}-X^{2}}$.
$f_{x}(X)=\frac{1}{\sqrt{A^{2}-X^{2}}} \frac{1}{2 \pi}+\frac{1}{\sqrt{A^{2}-X^{2}}} \frac{1}{2 \pi}=1 /\left(\pi \sqrt{A^{2}-X^{2}}\right),|X|<A$.
Note: Integrates to one; diverges at $X= \pm A$ (most likely values of $x(t)$).
Note: $\exists 2$ solns Θ_{1}, Θ_{2} to $x(\theta)=X \rightarrow \theta=x^{-1}(X): x$ sweeps $[-A, A]$ twice.
Next: $f_{x(t) \mid x(s)}\left(X_{t} \mid X_{s}\right)=\frac{1}{2} \delta\left(X_{t}-X_{1}\right)+\frac{1}{2} \delta\left(X_{t}-X_{2}\right)$, where X_{1}, X_{2} are $x(s)=A \cos (\omega s+\theta)=X_{s} \rightarrow \theta=\cos ^{-1} \frac{X_{s}}{A}-\omega s \rightarrow 2$ values of θ : $\rightarrow x(t)=A \cos \left(\omega t+\theta_{1}\right)=X_{1}$ or $x(t)=A \cos \left(\omega t+\theta_{2}\right)=X_{2}$.
Note: Each of X_{1} and X_{2} is equally likely with probability $1 / 2$, hence $\delta(\cdot)$.
Note: $1^{\text {st }}$-order stationary $\Leftrightarrow \mathrm{id}$; not independent or $2^{\text {nd }}$-order stationary.
Next: $f_{x(t), x(s)}\left(X_{t}, X_{s}\right)=f_{x(t) \mid x(s)}\left(X_{t} \mid X_{s}\right) f_{x(s)}\left(X_{s}\right)$. All of these now known.

$$
f_{x(t), x(s)}\left(X_{t}, X_{s}\right)=\frac{1}{2 \pi} \frac{1}{\sqrt{A^{2}-X_{s}^{2}}}\left(\delta\left(X_{t}-X_{1}\right)+\delta\left(X_{t}-X_{2}\right)\right),\left|X_{s}\right|<A
$$

Note: Once have $f_{x(t), x(s)}\left(X_{t}, X_{s}\right)$, can get any $2^{\text {nd }}$-order statistic or $\operatorname{Pr}[$ event $]$.

