EX \#1: To generate sample functions $x(n)$ of a Bernoulli process with $\mathrm{p}=0.6$:

1. Spin a wheel of fortune once, resulting in a number $\omega_{o} \in[0,1)$.
2. Let ω_{o} have decimal expansion $0 . w_{1} w_{2} w_{3} w_{4} w_{5} \ldots$ where $w_{i}=0,1 \ldots 9$.
3. Set $x(n)=1$ if $w_{n}=0,1,2,3,4$ or 5 and $x(n)=0$ if $w_{n}=6,7,8$ or 9 .
$\omega_{o}=0.141592653589793 \ldots \rightarrow\{x(n)\}=\{1,1,1,1,0,1,0,1,1,1,0,0,0,0,1 \ldots\}$.
$\omega_{o}=0.718281828459045 \ldots \rightarrow\{x(n)\}=\{0,1,0,1,0,1,0,1,0,1,1,0,1,1,1 \ldots\}$.
$\omega_{o}=0.718281828459045 \ldots \rightarrow\{x(n)\}=\{0,1,0,1,0,1,0,1,0,1,1,0,1,1,1 \ldots\}$.
4. Different sequence of 0 's and 1 's associated with each $\omega_{o} \in \Omega=[0,1)$. Each sequence is a sample function of the Bernoulli random process.
5. Digits independent of each other (if ω_{o} irrational); $\operatorname{Pr}[\mathrm{x}(\mathrm{n})=1]=0.6$.
6. $\operatorname{Pr}\left[\omega_{o}\right.$ irrational $]=1$ so this almost surely works (need ∞ precision).

EX \#2: Monte Carlo simulation of compounded rate of return on investments:

1. Let $x(n)$ be the annual rate of return on investments in year $2000+\mathrm{n}$.
2. Let $x(n) \sim \mathcal{N}(0.1,0.0004) \Leftrightarrow E[x(n)]=10 \%$ (historical average).
3. Confidence limits or intervals (see pp. 275-280 and recitation) are:

$$
\operatorname{Pr}[8 \%<x(n)<12 \%]=67 \% ; \quad \operatorname{Pr}[6 \%<x(n)<14 \%]=95 \% .
$$

4. Let $y(n)=\prod_{i=1}^{n}(1+x(i))$. Assume $x(n)$ iidrvs. Then $E[y(n)]=(1.1)^{n}$.
5. Generate 10 sample functions of $x(n)$ (Matlab's randn) and $y(n)$. Results plotted below. Curves are different sample functions of $y(n)$.

- Note that the actual return can vary greatly from the expected return! So don't plan on retiring too quickly! "Your performance may vary..."

