1. Let $b_{i}, i=1 \ldots 6$ denote the $i^{\text {th }}$ ball in the urn, and $b_{i} b_{j}$ denote that the $i^{\text {th }}$ THEN $j^{\text {th }}$ balls are taken (note that order matters).
1a. without replacement: Ω has $(6)(6-1)=30$ elements, which are:
$\Omega=\left\{b_{1} b_{2}, b_{1} b_{3}, b_{1} b_{4}, b_{1} b_{5}, b_{1} b_{6}, b_{2} b_{1}, b_{2} b_{3}, b_{2} b_{4}, b_{2} b_{5}, b_{2} b_{6} \ldots b_{5} b_{6}\right\}$.
1 b . with replacement: Ω has $(6)(6)=36$ elements, which are:
$\Omega=\left\{b_{1} b_{1}, b_{1} b_{2}, b_{1} b_{3}, b_{1} b_{4}, b_{1} b_{5}, b_{1} b_{6}, b_{2} b_{1}, b_{2} b_{2}, b_{2} b_{3}, b_{2} b_{4} \ldots b_{6} b_{6}\right\}$.
2. Let $\mathrm{H}=$ height of man in inches and $\mathrm{W}=$ height of woman in inches.

2a. $\Omega=\{(H, W): H>0$ and $W>0\}=\left(\mathcal{R}^{+}\right)^{2}$. (b): $E=\{(H, W): 0<H<W\}$.
3a. $A \cup \emptyset=A$ and $A \cap \emptyset=\emptyset \rightarrow \operatorname{Pr}[A]=\operatorname{Pr}[A \cup \emptyset]=\operatorname{Pr}[A]+\operatorname{Pr}[\emptyset] \rightarrow \operatorname{Pr}[\emptyset]=0$.
3b. $(E F) \cup\left(E F^{\prime}\right)=E$ and $(E F) \cap\left(E F^{\prime}\right)=\emptyset \rightarrow \operatorname{Pr}[E]=\operatorname{Pr}[E F]+\operatorname{Pr}\left[E F^{\prime}\right]$.
3c. $E \cup E^{\prime}=\Omega$ and $E \cap E^{\prime}=\emptyset \rightarrow \operatorname{Pr}[E]+\operatorname{Pr}\left[E^{\prime}\right]=\operatorname{Pr}[\Omega]=1 \rightarrow \operatorname{Pr}[E]=1-\operatorname{Pr}\left[E^{\prime}\right]$.
4. $\left(E F^{\prime}\right) \cup\left(F E^{\prime}\right)=E \oplus F$ and $\left(E F^{\prime}\right) \cap\left(F E^{\prime}\right)=\emptyset \rightarrow \operatorname{Pr}[E \oplus F]=\operatorname{Pr}\left[E F^{\prime}\right]+\operatorname{Pr}\left[F E^{\prime}\right]$.
5. $\# 3 b \rightarrow \operatorname{Pr}\left[E F^{\prime}\right]=\operatorname{Pr}[E]-\operatorname{Pr}[E F]$ and $\operatorname{Pr}\left[F E^{\prime}\right]=\operatorname{Pr}[F]-\operatorname{Pr}[F E]$. $\# 4 \rightarrow \operatorname{Pr}[E \oplus F]=\operatorname{Pr}[E]+\operatorname{Pr}[F]-2 \operatorname{Pr}[E F]$ QED. Note $\operatorname{Pr}[E F]=\operatorname{Pr}[F E]$.
6. See overleaf.
7. Let $B=\cap_{n=1}^{\infty} A_{n}=\cap_{n=1}^{\infty}(0,1 / n) . \quad x \in B \Leftrightarrow x \in A_{n} \Leftrightarrow 0<x<1 / n$ for all n.

But for any $x>0, \exists N$ s.t. $1 / N<x \rightarrow x \notin A_{N} \rightarrow x \notin B$. Hence $B=\emptyset$.
8. Let $\mathcal{Z}=\{$ integers $\}$ and $P_{n}=\{$ polynomials of degree n with integer coefficients $\}$. P_{n} is 1-1 with \mathcal{Z}^{n+1} since $a_{0}+a_{1} z+\ldots+a_{n} z^{n} \in P_{n} \leftrightarrow\left(a_{0}, a_{1} \ldots a_{n}\right) \in \mathcal{Z}^{n+1}$. $\mathcal{A}=$ \{algebraic irrationals\} 1-1 with a subset of $\cup_{n=1}^{\infty} P_{n}$, since every $A \in \mathcal{A}$ is the root of a polynomial with integer coefficients (some duplication). $\cup_{n=1}^{\infty} P_{n}=$ countable union of countable sets=countable $\rightarrow \mathcal{A}$ at most countable. $\left\{2^{1 / n}, n=2,3 \ldots\right\} \subset \mathcal{A} \rightarrow \mathcal{A}$ at least countably infinite $\rightarrow \mathcal{A}$ is countably infinite.
6. Note that there are L^{K} different mappings $f:\{1,2 \ldots K\} \rightarrow\{1,2 \ldots L\}$. Try interpreting the following results in terms of this result.

6a. Typical member of A is specified by $\{f(0)=i, f(1)=j\}$ where $i, j \in \mathcal{Z}^{+}$.
A is $1-1$ with $\left(\mathcal{Z}^{+}\right)^{2}$ since $\{f(0), f(1)\} \leftrightarrow(i, j)$. COUNTABLE.
6b. B_{n} is 1-1 with $\left(\mathcal{Z}^{+}\right)^{n}$ since $\{f(1) \ldots f(n)\} \leftrightarrow\left(i_{1}, \ldots i_{n}\right)$. COUNTABLE.
6 c . C is a countable union of countable sets B_{n} from $\# 6 \mathrm{~b}$, so C is COUNTABLE.
$6 \mathrm{~d} . E \subset D$ and D is uncountable from \#6e below, so D is UNCOUNTABLE.
6e. Typical member of E is specified by $f(1)=0, f(2)=1, f(3)=1, f(4)=0 \ldots$ E is $1-1$ with $[0,1)$ since $\{f(1), f(2) \ldots\} \leftrightarrow\left(0 . x_{1} x_{2} \ldots\right) \in[0,1)$ where $x_{i}=0,1$. Since $[0,1)$ is uncountable, E is UNCOUNTABLE. (D, E are only uncountables).

6f. $F=\cup_{N=1}^{\infty} F_{N}$ where $F_{N}=\{f: f(n)=0$ for $n>N\}$ has 2^{N} elements.
F is a countable union of finite sets F_{N}, so F is COUNTABLE.
NOTE: F does not include an " F_{∞} " which would have " 2 " elements.
6g. $G=\cup_{N=1}^{\infty} G_{N}$ where $G_{N}=\{f: f(n)=1$ for $n>N\}=B_{N}$ from $\# 6 \mathrm{~b}$.
G is a countable union of countable sets G_{N}, so G is COUNTABLE.
6h. Let $H_{i, j}$ be the set of functions $f(n)$ that are eventually j for $n>i$.
NOTE: The "eventual constant" must be an integer since $f: Z^{+} \rightarrow Z^{+}$.
$H=\cup_{i=1}^{\infty} \cup_{j=1}^{\infty} H_{i, j}$. Note that $H_{N, 1}=G_{N}$ from $\# 6 \mathrm{~g}$.
H is a countable double union of countable sets, so H is COUNTABLE.
6i. $I=\left\{\{i, j\}: i \neq j\right.$ and $\left.i, j \in \mathcal{Z}^{+}\right\} \leftrightarrow\left(\mathcal{Z}^{+}\right)^{2}$, excluding the diagonal lattice points.
Typical members of $I:\{1,2\},\{3,5\},\{4,9\} \ldots \quad I$ is COUNTABLE.
6j. $J=\cup_{n=1}^{\infty} J_{n}$ where $J_{n}=\left\{\left\{i_{1}, i_{2} \ldots i_{n}\right\}: i_{1} \neq i_{2} \neq \ldots i_{n}\right.$ and $\left.i_{1} \ldots i_{n} \in \mathcal{Z}^{+}\right\}$.
Note $J_{2}=I$ from $\# 6$ i. $J_{n} \leftrightarrow\left(\mathcal{Z}^{+}\right)^{n}$, again excluding diagonal lattice points. J is a countable union of countable sets, so J is COUNTABLE.

