1. Let $b_i, i = 1...6$ denote the i^{th} ball in the urn, and $b_i b_j$ denote that the i^{th} THEN j^{th} balls are taken (note that order matters).

1a. without replacement: Ω has (6)(6-1) = 30 elements, which are:

 $\Omega = \{b_1b_2, b_1b_3, b_1b_4, b_1b_5, b_1b_6, b_2b_1, b_2b_3, b_2b_4, b_2b_5, b_2b_6 \dots b_5b_6\}.$

1b. with replacement: Ω has (6)(6) = 36 elements, which are:

 $\Omega = \{b_1b_1, b_1b_2, b_1b_3, b_1b_4, b_1b_5, b_1b_6, b_2b_1, b_2b_2, b_2b_3, b_2b_4 \dots b_6b_6\}.$

2. Let H=height of man in inches and W=height of woman in inches. 2a. $\Omega = \{(H, W) : H > 0 \text{ and } W > 0\} = (\mathcal{R}^+)^2$. (b): $E = \{(H, W) : 0 < H < W\}$.

3a. $A \cup \emptyset = A$ and $A \cap \emptyset = \emptyset \to Pr[A] = Pr[A \cup \emptyset] = Pr[A] + Pr[\emptyset] \to Pr[\emptyset] = 0$. 3b. $(EF) \cup (EF') = E$ and $(EF) \cap (EF') = \emptyset \to Pr[E] = Pr[EF] + Pr[EF']$. 3c. $E \cup E' = \Omega$ and $E \cap E' = \emptyset \to Pr[E] + Pr[E'] = Pr[\Omega] = 1 \to Pr[E] = 1 - Pr[E']$.

4. $(EF') \cup (FE') = E \oplus F$ and $(EF') \cap (FE') = \emptyset \rightarrow Pr[E \oplus F] = Pr[EF'] + Pr[FE'].$ 5. $\#3b \rightarrow Pr[EF'] = Pr[E] - Pr[EF]$ and Pr[FE'] = Pr[F] - Pr[FE]. $\#4 \rightarrow Pr[E \oplus F] = Pr[E] + Pr[F] - 2Pr[EF]$ QED. Note Pr[EF] = Pr[FE].

6. See overleaf.

7. Let $B = \bigcap_{n=1}^{\infty} A_n = \bigcap_{n=1}^{\infty} (0, 1/n)$. $x \in B \Leftrightarrow x \in A_n \Leftrightarrow 0 < x < 1/n$ for all n. But for any $x > 0, \exists N \ s.t. \ 1/N < x \to x \notin A_N \to x \notin B$. Hence $B = \emptyset$.

8. Let $\mathcal{Z} = \{integers\}$ and $P_n = \{polynomials of degree n with integer coefficients\}$. P_n is 1-1 with \mathcal{Z}^{n+1} since $a_0 + a_1 z + \ldots + a_n z^n \in P_n \leftrightarrow (a_0, a_1 \ldots a_n) \in \mathcal{Z}^{n+1}$. $\mathcal{A} = \{algebraic irrationals\}$ 1-1 with a subset of $\bigcup_{n=1}^{\infty} P_n$, since every $A \in \mathcal{A}$ is the root of a polynomial with integer coefficients (some duplication). $\bigcup_{n=1}^{\infty} P_n$ =countable union of countable sets=countable $\rightarrow \mathcal{A}$ at most countable. $\{2^{1/n}, n = 2, 3 \ldots\} \subset \mathcal{A} \rightarrow \mathcal{A}$ at least countably infinite $\rightarrow \mathcal{A}$ is countably infinite.

- 6. Note that there are L^K different mappings $f : \{1, 2..., K\} \to \{1, 2..., L\}$. Try interpreting the following results in terms of this result.
- 6a. Typical member of A is specified by $\{f(0) = i, f(1) = j\}$ where $i, j \in \mathbb{Z}^+$. A is 1-1 with $(\mathbb{Z}^+)^2$ since $\{f(0), f(1)\} \leftrightarrow (i, j)$. COUNTABLE.
- 6b. B_n is 1-1 with $(\mathcal{Z}^+)^n$ since $\{f(1) \dots f(n)\} \leftrightarrow (i_1, \dots i_n)$. COUNTABLE.
- 6c. C is a countable union of countable sets B_n from #6b, so C is COUNTABLE.
- 6d. $E \subset D$ and D is uncountable from #6e below, so D is UNCOUNTABLE.
- 6e. Typical member of E is specified by $f(1) = 0, f(2) = 1, f(3) = 1, f(4) = 0 \dots$ E is 1-1 with [0,1) since $\{f(1), f(2) \dots\} \leftrightarrow (0.x_1x_2 \dots) \in [0,1)$ where $x_i=0,1$. Since [0,1) is uncountable, E is UNCOUNTABLE. (D, E are only uncountables).
- 6f. $F = \bigcup_{N=1}^{\infty} F_N$ where $F_N = \{f : f(n) = 0 \text{ for } n > N\}$ has 2^N elements. F is a countable union of *finite* sets F_N , so F is COUNTABLE. NOTE: F does *not* include an " F_{∞} " which would have " 2^{∞} " elements.
- 6g. $G = \bigcup_{N=1}^{\infty} G_N$ where $G_N = \{f : f(n) = 1 \text{ for } n > N\} = B_N$ from #6b. G is a countable union of *countable* sets G_N , so G is COUNTABLE.
- 6h. Let $H_{i,j}$ be the set of functions f(n) that are eventually j for n > i. NOTE: The "eventual constant" must be an integer since $f: Z^+ \to Z^+$. $H = \bigcup_{i=1}^{\infty} \bigcup_{j=1}^{\infty} H_{i,j}$. Note that $H_{N,1} = G_N$ from #6g. H is a countable double union of countable sets, so H is COUNTABLE.
- 6i. $I = \{\{i, j\} : i \neq j \text{ and } i, j \in \mathbb{Z}^+\} \leftrightarrow (\mathbb{Z}^+)^2$, excluding the diagonal lattice points. Typical members of $I:\{1, 2\}, \{3, 5\}, \{4, 9\} \dots$ I is COUNTABLE.
- 6j. $J = \bigcup_{n=1}^{\infty} J_n$ where $J_n = \{\{i_1, i_2 \dots i_n\} : i_1 \neq i_2 \neq \dots i_n \text{ and } i_1 \dots i_n \in \mathbb{Z}^+\}$. Note $J_2 = I$ from #6i. $J_n \leftrightarrow (\mathbb{Z}^+)^n$, again excluding diagonal lattice points. J is a countable union of countable sets, so J is COUNTABLE.