NOTE: Major point of Problems \#1-3 is learning to read the problem.
1a. $\operatorname{Pr}[$ one BM destroyed $]=1-\operatorname{Pr}[$ both AMM miss $]=1-(0.2)^{2}=0.96$.
$\operatorname{Pr}[$ all 6 BM destroyed $]=(\operatorname{Pr}[\mathrm{BM} \text { destroyed }])^{6}=(0.96)^{6}=0.783$.
1b. $\operatorname{Pr}[$ at least one $B M$ gets through $]=1$-(the answer to $\# 1 a)=0.217$.
1c. $\operatorname{Pr}[$ exactly one $B M$ gets through $]=\binom{6}{5}(0.96)^{5}(1-0.96)^{1}=0.195$.
2. $\operatorname{Pr}[$ exactly one gets through \mid target destroyed $]=\frac{\operatorname{Pr}[\text { exactly one }]}{\text { Pr[at least one }]}=\frac{0.195(\text { from } \# 1 c)}{0.217(\text { from } \# 1 b)}=0.90$

3a. $\operatorname{Pr}[$ at least one success in m attempts $]=1-(\operatorname{Pr}[\text { no success }])^{m}=1-\left(1-p^{N}\right)^{m}$.
3b. For each receiver, $\operatorname{Pr}[$ at least one success in m attempts $]=1-(1-p)^{m}$.
For all receivers, $\operatorname{Pr}[$ at least one success in m attempts $]=\left(1-(1-p)^{m}\right)^{N}$.
NOTE: For $\mathrm{p}=0.9, \mathrm{~N}=5, \mathrm{~m}=2$, we get $P(2)=0.832($ from $(a))<P_{D}(2)=0.951($ from $(b))$.
3c. For $\mathrm{N}=1$ and $p \ll 1$, using the binomial expansion gives
$1-(1-p)^{m}=1-\left(1-m p+\frac{m(m-1)}{2} p^{2}+\ldots\right) \approx m p$ (neglects $\operatorname{Pr}[2$ or more successes $]$).
NOTE: Major point of Problems \#4-\#6 is conditional probability.
For Problem \#4 count in Ω; for $\# 5-6$ use formula and Bayes's rule.
4. Sample space: $\Omega=\{(i, j): 1 \leq i, j \leq 9\}$. Random variable: $\Sigma=i+j$.

Each point in sample space is equally likely, with $\operatorname{Pr}[(i, j)]=\frac{1}{81}$. Events=sets:
$\{\Sigma=7\} \Leftrightarrow(i, j) \in\{(6,1),(5,2),(4,3),(3,4),(2,5),(1,6)\} . \quad\{\Sigma>10\}: 36$ ways.
$\{\Sigma>10\} \cap\{i, j \leq 7\} \Leftrightarrow(i, j) \in\{(4,7),(5,6),(6,5),(7,4),(5,7),(6,6),(7,5),(6,7),(7,6),(7,7)\}$.
$\{\Sigma$ odd $\} \cap\{i=9\} \Leftrightarrow(i, j) \in\{(9,2),(9,4),(9,6),(9,8)\} . \quad\{\Sigma$ odd $\}: 40$ ways.
$\operatorname{Pr}[\Sigma=7 \mid \Sigma$ odd $]=\frac{\operatorname{Pr}[\{\Sigma=7\} \cap\{\Sigma \text { odd }\}}{\operatorname{Pr}[\Sigma \text { odd }]}=\frac{\operatorname{Pr}[\Sigma=7]}{\operatorname{Pr}[\Sigma \text { odd }]}=\frac{6 / 81}{40 / 81}=0.150 .\left(\operatorname{Pr}[\Sigma\right.$ odd $\left.] \neq \frac{1}{2}.\right)$
$\operatorname{Pr}[\mathrm{i}$ or $\mathrm{j}>7 \mid \quad \Sigma>10]=1-\operatorname{Pr}[i, j \leq 7 \mid \Sigma>10]=1-\frac{\operatorname{Pr}[\{i, j \leq 7\} \cap\{\Sigma>10\}}{\operatorname{Pr}[\Sigma>10]}=1-\frac{10 / 81}{36 / 81}=0.722$.
$\operatorname{Pr}[\Sigma$ odd $\mid i=9]=\frac{\operatorname{Pr}[\{\Sigma \text { odd }\} \cap\{i=9\}]}{\operatorname{Pr}[i=9]}=\frac{4 / 81}{9 / 81}=0.444$.
5. We are given the ratios $\operatorname{Pr}[x=3]=3 \operatorname{Pr}[x=1] ; \operatorname{Pr}[x=2]=2 \operatorname{Pr}[x=1]$.

Then $\operatorname{Pr}[x=1]+\operatorname{Pr}[x=2]+\operatorname{Pr}[x=3]=1 \rightarrow \operatorname{Pr}[x=X]=X / 6, X=1,2,3$.
$\operatorname{Pr}[x=1 \mid y=1]=\frac{\operatorname{Pr}[y=1 \mid x=1] \operatorname{Pr}[x=1]}{\sum_{n=1}^{n=3} \operatorname{Pr}[y=1 \mid x=n] \operatorname{Pr}[x=n]}=\frac{(1-\alpha) \frac{1}{6}}{(1-\alpha) \frac{1}{6}+\frac{\beta}{2} \frac{2}{6}+\frac{\gamma}{2} \frac{3}{6}}=\frac{1-\alpha}{1-\alpha+\beta+3 \gamma / 2}$.
This is an application of Bayes's rule; note the (very common) form $\frac{A}{A+B+C}$.

Let events be: A chase die A
(6)

B: choose we B

G_{n} : olive face on throw n \mathcal{L}_{n} : Lavencler face on throw n

$$
\text { a) } \begin{aligned}
& \operatorname{Prob}\left(G_{n}\right)=P\left(G_{n} A\right)+P\left(C_{n} B\right) \\
&=P\left(G_{n} \mid A\right) P(A)+P\left(C_{1} \mid B\right) P(B) \\
&=(5 / 6)(1 / 2)+(1 / 2)(1 / 2)=2 / 3
\end{aligned}
$$

b) $\operatorname{Prb}\left(\theta_{n}\right.$ and $\left.\theta_{n+1}\right)=P\left[\left(\theta_{n}\right.\right.$ and $\left.\left.\theta_{n+1}\right) A\right]+P\left[\left(\theta_{n}\right.\right.$ and $\left.\left.\epsilon_{n+1}\right) B\right]$

$$
=P\left[\left(\epsilon_{n} \text { and } \theta_{n+1}\right) \mid A\right] P(A)+P\left[\left(\theta_{n} \text { and } \theta_{n+1}\right) \mid B\right] P(B)
$$

$$
=(5 / 6)(5 / 6)(1 / 2)+(1 / 2)(1 / 2)(1 / 2)=17 / 36
$$

c) $\operatorname{Prcb}\left(\theta_{n+1} \mid G_{1}, \theta_{2}, \ldots \theta_{n}\right)=\frac{\operatorname{Prob}\left(\theta_{1} \theta_{2}, \ldots \theta_{n} \theta_{n+1}\right)}{\operatorname{Prob}\left(\theta_{1}, \theta_{2}, \ldots \theta_{n}\right)}$

Extrapolating from part b), this is $\frac{(5 / 6)^{n+1}\left(y_{2}\right)+(1 / 2)^{n+1}\left(Y_{2}\right)}{(5 / 6)^{n}(1 / 2)+(1 / 2)^{n}(1 / 2)}$
$(5 / 6)^{n+1}(1 / 2)^{n+1}$ $=\frac{(5 / 6)^{n+1}+(1 / 2)^{n+1}}{(5 / 6)^{n}+(1 / 2)^{n}}$ Dividing top and bottom by $(5 / 6)^{n}(5 / 6)^{n}(1 / 2)+(1 / 2)^{n}(1 / 2)$ gives $\frac{\left.(5 / 6)+(1 / 2)^{3} / 5\right)^{n}}{1+(3 / 5)^{n}}$
(7) As n becomes large, $(3 / 5)^{n} \rightarrow 0$ and the fraction approaches $5 / 6$, indicating that die A is being used.

Ti Lea $k \leq n$ and $k \leq m$. When k balls are drawifrom a box containing
 $n+m$ in $\binom{n+m}{k}$ different ways there are $\binom{n+m}{k}$ equally likely possible outcomes to our experiment. The favorable ones are thou in which exactly f of the k balls drawn are white, and consequently, $k-r$
of them black. It is clear that this is possible only when $r \leq k, r \leq n$, and of them black. It is clear that this is poesubie only when $r \leq k, r \leq n$, and
$k-r \leq m$; when there conditions do not all hold, there are no favorable outcomes at all and the desired probability is zero. Ancuming that the by combining each of the $\binom{n}{r}$ ways of drawing r belle from the n while balk with the $\binom{m}{k-r}$ wart of drawing $k-r$ ball from the m black balk.
Thus the number of favorable outcomes is $\binom{n}{r}\binom{m}{k-r}$, and the required
probability is $\binom{n}{f}\binom{m}{k-r} /\binom{n+m}{k}$. HYPERGEXMETGC
FORMUlA OREL FORM MA, DIRECTLY
:FROM LECTURE. (:FROM' LECTURE.

$$
\binom{n}{0}\binom{m}{k}+\binom{n}{1}\binom{m}{k-1}+\binom{n}{2}\binom{m}{k-2}+\cdots+\binom{n}{k}\binom{m}{0}=\binom{n+m}{k}
$$

THERE ARE MANY WEIRD IDENTITIES IKE THIS.
MOST CAN BE MTERPRETED IN TERMS OF COUNTING.

