1. We are given that $f_{y \mid \theta}(Y \mid \Theta) \sim \mathcal{N}\left(\Theta, \sigma^{2}\right) \rightarrow E[y \mid \theta=\Theta]=\Theta$.

Then $E[y]=E_{\theta}\left[E_{y}[y \mid \theta=\Theta]\right]=\int E[y \mid \theta=\Theta] f_{\theta}(\Theta) d \Theta=\int_{0}^{2 \pi} \Theta \frac{1}{2 \pi} d \Theta=\pi$.
2. From pp. 138-139, we know that $f_{z}(Z)=\frac{Z}{\sigma^{2}} e^{-Z^{2} /\left(2 \sigma^{2}\right)}, Z \geq 0$ (Rayleigh pdf).
$E[z]=\int_{0}^{\infty} Z^{2} e^{-Z^{2} / 2} d Z=-\left.Z e^{-Z^{2} / 2}\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-Z^{2} / 2} d Z=0+\sqrt{\pi / 2}=\sqrt{\pi / 2}$ using integration by parts: $\int u d v=u v-\int v d u$ where $u=Z$ and $v=-e^{-Z^{2} / 2}$
and $\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-X^{2} / 2} d X=1 \rightarrow \int_{0}^{\infty} e^{-X^{2} / 2} d X=\frac{1}{2} \sqrt{2 \pi}=\sqrt{\pi / 2}$ by symmetry.
$E\left[z^{2}\right]=\int_{0}^{\infty} Z^{3} e^{-Z^{2} / 2} d Z=\int_{0}^{\infty} 2 U e^{-U} d U=2$ where $U=Z^{2} / 2$.
So $\sigma_{z}^{2}=E\left[z^{2}\right]-(E[z])^{2}=2-\pi / 2=0.4292$.
3a. $E_{y}\left[E_{x}[g(x, y) \mid y]\right]=\int d Y f_{y}(Y)\left(\int g(X, Y) f_{x \mid y}(X \mid Y) d X\right)$
$=\int d Y \int d X g(X, Y) f_{y}(Y) f_{x \mid y}(X \mid Y)=\int d Y \int d X g(x, y) f_{x, y}(X, Y)=E[g(x, y)]$.
3b. $g(x, y)=x$ and $g(x, y)=x^{2} \rightarrow \sigma_{x}^{2}=E\left[x^{2}\right]-(E[x])^{2}=E_{y}\left[E\left[x^{2} \mid y\right]\right]-\left(E_{y}[E[x \mid y]]\right)^{2}$.
$E_{y}\left[\sigma_{x \mid y}^{2}\right]=E_{y}\left[E\left[x^{2} \mid y\right]\right]-E_{y}\left[(E[x \mid y])^{2}\right]$ and $\operatorname{Var}_{y}[E[x \mid y]]=E_{y}\left[(E[x \mid y])^{2}\right]-\left(E_{y}[E[x \mid y]]\right)^{2}$.
Adding, we get $\sigma_{x}^{2}=E_{y}\left[\sigma_{x \mid y}^{2}\right]+\operatorname{Var}_{y}[E[x \mid y]]$ Q.E.D. What does this mean? See \#4.
4a. $E[y]=E_{n}[E[y \mid n]]=E_{n}[n E[x]]=E[n] E[x]$ since $y=x_{1}+x_{2}+\ldots+x_{n}$.
$\sigma_{y}^{2}=E_{n}\left[\sigma_{y \mid n}^{2}\right]+\operatorname{Var}_{n}[E[y \mid n]]=E_{n}\left[n \sigma_{x}^{2}\right]+\operatorname{Var}_{n}[n E[x]]=E[n] \sigma_{x}^{2}+(E[x])^{2} \sigma_{n}^{2}$.
n constant $\rightarrow \sigma_{y}^{2}=n \sigma_{x}^{2}$. But x constant $\rightarrow \sigma_{y}^{2}=x^{2} \sigma_{n}^{2}$. Makes sense since $y=x n$.
4b. Total number r of items sold=sum of random number (k) of random variables (n). $\sigma_{r}^{2}=E[k] \sigma_{n}^{2}+(E[n])^{2} \sigma_{k}^{2}=\mu_{1} \mu_{2}+\mu_{1} \mu_{2}^{2}$ where $E[k]=\sigma_{k}^{2}=\mu_{1}$ and $E[n]=\sigma_{n}^{2}=\mu_{2}$. Increasing μ_{1}, as opposed to μ_{2}, leads to a smaller increase in σ_{r}^{2}.

5. See overleaf.

6. Let $A_{n}=\left\{\omega: x(\omega)>\frac{1}{n}\right\} . A_{1} \subset A_{2} \subset \cdots \subset\{\omega: x(\omega)>0\}$. Continuity of probability $\rightarrow \operatorname{Pr}[x>0]=\operatorname{Pr}[\{\omega: x(\omega)>0\}]=\operatorname{Pr}\left[{ }_{n \rightarrow \infty}^{\mathrm{LIM}} A_{n}\right]={ }_{n \rightarrow \infty}^{\mathrm{LIM}} \operatorname{Pr}\left[A_{n}\right]={ }_{n \rightarrow \infty}^{\mathrm{LIM}} \operatorname{Pr}\left[x>\frac{1}{n}\right]$
$\leq{ }_{n \rightarrow \infty}^{\operatorname{LIM}} n E[x]=0 \rightarrow \operatorname{Pr}[x=0]=1$ using the Markov inequality and $E[x]=0$.
(5) ORDGR:

STATISTICS
(a) TRANSFORMTION $y=g(\underline{x})$:

INVERE $x=9^{-1}(y)$
TRNNSFRMATION
$y_{1}=\operatorname{SMALCEST}\left[x_{1} \ldots x_{n}\right]$

$$
x_{1}<x_{2}<\ldots<x_{n} \leftrightarrow\left[\begin{array}{l}
y_{1}=x_{1} \\
y_{n}=x_{n}
\end{array}\right]
$$

$y_{2}=200 \operatorname{sutclest}\left(x_{1} \ldots x_{n}\right)$
$x_{2}<x_{1}<x_{3}<-<x_{n}<x_{1}$
TOTAL of $n!$ opoeruas $\left[\begin{array}{l}y_{1}=x_{2} \\ y_{2}=x_{1} \\ y_{3} \\ x_{1}=x_{3}\end{array}\right]$

JACOEIAN FOR EACH $\underline{x}=9^{-1}(y)$ is OEVICNSTY ((JUTT PEOROER (UC).

DOESTHIS INTECRITETO 1 ? WE KNOW $\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{x}\left(Y_{1}\right)-r_{x}\left(Y_{n}\right) d Y_{1} . . d Y_{n}=1$.

 SO THHS WTERRATES To $\frac{1}{n!}$.
Mит. DY И! To MAES INTECRTETO!

STOP AFTER GET TOARE-1, SNCE SFIPANG 1 dik. IT THIS POINT, HIVE $\frac{1}{(x-1)!}\left(F_{r}(K-1)\right)^{n-1}$.

- ON THE OTHEX SOE, GET $\frac{1}{(n-k)!}\left(1-F_{x}\left(Y_{k}\right)\right)^{n-k}$ sMiuRLY.
- hever did inteciate (fy (Th), so havethut Also. incluving ouglil n! adove, ofet

$$
f_{Y_{k}}\left(Y_{k}\right)=\frac{1}{(k-1)!}\left(F_{x}\left(Y_{k}\right)\right)^{n-1} \frac{1}{(n-k)!}\left(1-F_{x}\left(Y_{k}\right)\right)^{n-k} f_{x}\left(T_{k}\right) n!=\sqrt{\left(\frac{n-1)!(m+1)!}{n} F_{x}\left(Y_{k}\right)^{1-1}\left(1-F_{k}\left(r_{n}\right)\right)\right)_{r_{x}}^{k}\left(r_{k}\right)}
$$

(C) USNC MUTTNOMCAL

NOTEN: $f_{x_{n}}(Y)=n\left(F_{x}(Y)\right)^{n-1} f_{x}(Y)=\frac{d}{d r}\left(F_{x}(Y)\right)^{n}=\frac{d}{d r}\left(P_{1}\left(x_{1}<Y\right.\right.$ 促 $x_{2}<Y$ AM..$\left.]\right)$
PARTICUAR MAXIMLMM

REF: A. PAPOLLIS, PROP, RAMDOM PROC.,..., 3' EP., 1991, PP. 185-186 (c). K. S. SHANMUGAN, A.M. BREIPONL, RANDOM SIGNALS, 1988 , PP. 70-72 (a, b).

