EEC	CS 501	SOLUTIONS TO PROBLEM SET $#8$	Fall 2001
1a.	Note $E[(x(n) = 2R_{xy}(n, n)] =$	$\frac{1}{1-y(n)^2} = E[x(n)^2] + E[y(n)^2] - 2E[x(n)y(n)] = R_x(n,n) + 0 \rightarrow x(n) = y(n)$ with probability one from #6 of Proble	$\frac{1}{1} + R_y(n,n) - $ em Set #5.
1b.	Let $y(n) = x$ $\sigma_{y(n)}^2 = E[(x(n-1)) + x(n))$ perior Also, $R_x(n+1)$	$ (n+T) - x(n). \text{ Then } E[y(n)] = E[x(n+T)] - E[x(n)] = 0 (n+T) - x(n))^2] = R_x(0) + R_x(0) - 2R_x(T) = 0 \to x(n+T) \text{dic with probability one, using the result of #1a above.} (T) = E[x(i)x(i+n+T)] = E[x(i)x(i+n)] = R_x(n) \to R_x(n) $	$\overline{} = 0 = 0$ and $\overline{} = x(n)$ (n) periodic.
NOTE:	$Chebyschev \neq$	$\stackrel{d}{\to} Pr[y > \epsilon] \le \frac{\sigma_y^2}{\epsilon^2} = 0 \to Pr[y = 0] = 1 \ (\Leftrightarrow \# 6 \text{ of Problem S})$	Set $\#5$).
2.	$x(n) = \rho x(n - N)$ Note that the	$(-1)+w(n), x(0) = 0 \Leftrightarrow x(n) = \sum_{i=0}^{n-1} h(i)w(n-i)$ where $h(n)$ is upper limit is $(n-1)$ since $x(0) = 0$ and $w(n)$ is only define	$= \rho^n, n \ge 0$ ed for $n \ge 1$.
2a.	$E[x(n)] = \sum$	$\sum_{i=0}^{n-1} \rho^i E[w(n-i)] = 0$. Plugging directly into lecture formula	ae:
2b. $K_x(m,n) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \rho^{i+j} K_w(m-n-i+j)$		$\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \rho^{i+j} K_w(m-n-i+j) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \rho^{i+j} \sigma_w^2 \delta(m-n-i+j) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \rho^{i+j} \sigma_w^2 \delta(m-n-i+j)$	$\overline{n-n-i+j)}$
	$K_x(m,n) = c$	$\sigma_w^2 \sum_{j=0}^{n-1} \rho^{m-n+2j} = \sigma_w^2 \rho^{m-n} \frac{1-\rho^{2n}}{1-\rho^2} = \sigma_w^2 \frac{\rho^{m-n} - \rho^{m+n}}{1-\rho^2} \text{ assumin}$	$\log m \ge n.$
	$K_x(m,n) = c$		$n \leq n$).
2c.	For $ \rho < 1$, c	elearly $\lim_{m,n\to\infty} K_x(m,n) = \frac{\sigma_w^2 \rho^{ m-n }}{1-\rho^2}$. Hence $x(n)$ is asymptot	ically WSS.
	This makes s	ense: the initial condition $x(0) = 0$ is now in the infinite pas	st.
2d.	As $\rho \to 1 \Leftrightarrow e$ $\rightarrow \sigma_w^2 \frac{e((m+n))}{2}$	$e = 1 - \rho \to 0$, then $K_x(m, n) = \sigma_w^2 \frac{\rho^{ m-n } - \rho^{m+n}}{1 - \rho^2} \to \sigma_w^2 \frac{(1 - e^{ m-n })}{1 - \rho^2}$	$\frac{ n) - (1 - e(m+n))}{1 - (1 - e)^2}$ lecture!
3.	$N(n): N(n)$ $\sum_{k=1}^{n} x(k) \rightarrow \infty$	is the sum of a 1-sided iid random process (Bernoulli), so have $E[N(n)] = nE[x] = np$ and $K_N(i,j) = \sigma_x^2 \min[i,j] = p(1-j)$	ave $N(n) =$ $p)\min[i, j].$
	$\mathbf{Y(n):} E[Y(r$	$\overline{i)] = E[(-1)^{N(n)}] = E[\prod_{k=1}^{n} (-1)^{x(k)}] = \prod_{k=1}^{n} E[(-1)^{x(k)}] = \prod_{k=1}^{n} E[(-1)$	$(1-2p)^n$
	since $x(n)$ ind	lependent $\rightarrow (-1)^{x(n)}$ uncorrelated and $(-1)^{x(n)} = \begin{cases} 1 & \text{wit} \\ -1 & \text{wit} \end{cases}$	th prob. $1 - p$ th prob. p
	$E[Y(n)Y(n + for h \ge 0]$	$E[\prod_{i=1}^{n} (-1)^{x(i)} \prod_{j=1}^{n+k} (-1)^{x(j)}] = E[\prod_{j=n+1}^{n+k} (-1)^{x(j)}]$	$= (1 - 2p)^k,$ for $k < 0$
	But $K_{r}(i, j)$	$\frac{1}{E_{Y}(i) = 1} = 1. \text{ Hence } K_{Y}(k) = (1 - 2p)^{ i } \text{ (use same idea)}$ $= R_{Y}(i-j) - E[Y(i)]E[Y(i)] - (1 - 2p)^{ i-j } - (1 - 2p)^{ i-j }$	$\frac{101 \ \kappa < 0)}{+j}$
	Y(n) is asym	$L_{p}([1 \ J]) = (1 \ 2p)^n$ (1 $2p)^n$ uptotically WSS since $\lim_{n \to \infty} (1 - 2p)^n = 0$. Note: Given $p \neq \frac{1}{2}$	· ·
4.	Pmf for x(n	$(p_{x(n)}(n) = \frac{1}{n}; p_{x(n)}(0) = 1 - \frac{1}{n} \} \to E[x(n)^2] = \frac{1}{n}n^2 + (1)$	$-\frac{1}{n})0^2 = n.$
4a.	Convergence	in prob. $\Leftrightarrow \lim_{n \to \infty} \Pr[x(n) - 0 > \epsilon] = \lim_{n \to \infty} \Pr[x(n) = 1] = \prod_{n \to \infty}^{\text{LIM}} \Pr[x(n) = 1] =$	$\lim_{n \to \infty} \frac{1}{n} = 0.$
4b.	Convergence Then $x(n,s)$	with prob. 1 \Leftrightarrow $Pr[\{s: \lim_{n \to \infty} x(n,s) = 0\}] = 1$. Fix $s \neq 0$ wh = 0 for $n > \frac{1}{s} \to \lim_{n \to \infty} x(n,s) = 0$. $Pr[\{s: s \neq 0\}] = 1 \to \text{constant}$	tere $s \in \Omega$. averges a.s.
4c.	Convergence	in mean square $\Leftrightarrow \lim_{n \to \infty} E[(x(n) - 0)^2] = \lim_{n \to \infty} n \neq 0 \to \text{doesn}$	n't converge.

5. Note:
$$E[M(n)x(n)] = \frac{1}{n} \sum_{i=1}^{n} E[x(i)x(n)] = \frac{1}{n} \sum_{i=1}^{n} R_x(i, n) = C(n)$$
 since 0-mean.
Only if: Schwarz \neq : $C(n)^2 = E[M(n)x(n)]^2 \leq E[M(n)^2]E[x(n)^2] = E[M(n)^2]R_x(n, n)$.
Then $\lim_{n \to \infty} M(n) = 0 \Leftrightarrow \lim_{n \to \infty} E[(M(n) - 0)^2] = 0 \to \lim_{n \to \infty} C(n) \to 0$. QED.
If: $E[M(n)^2] = \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} E[x(i)x(j)] = \frac{1}{n^2} \sum_{i=1}^{j} \sum_{i=1}^{n} R_x(i, j)$
 $= \frac{2}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{i} R_x(j, i) - \frac{1}{n^2} \sum_{i=1}^{n} \sigma_{x(i)}^2 = \frac{2}{n^2} \sum_{i=1}^{n} iC(i) - \frac{1}{n^2} \sum_{i=1}^{n} \sigma_{x(i)}^2$.
Then $\lim_{n \to \infty} C(n) = 0 \to \lim_{n \to \infty} E[M(n)^2] = 0 \to \lim_{n \to \infty} M(n) = 0$ using the hint
and $\frac{1}{n^2} \sum_{i=1}^{n} \sigma_{x(n)}^2 \leq \frac{1}{n} \max_{i=1}^{MAX} R_x(i, i) \to 0$ since finite $\sigma_{x(i)}^2$. QED.