SUMMARY OF ORTHOGONAL QMFs

THM: Let $H_0(\omega)$ be a lowpass filter satisfying $|H_0(\omega)|^2 + |H_0(\omega + \pi)|^2 = 2$. Then a perfect-reconstruction QMF is given by $G_0(\omega) = H_0(-\omega)$; $G_1(\omega) = H_1(-\omega)$, where $H_1(\omega) = -H_0(\pi - \omega)e^{-j\omega(2N-1)}$, which is equivalent to $h_1(n) = (-1)^n h_0(2N - 1 - n)$ using $DTFT[h_0(2N-1-n)] = e^{-j\omega(2N-1)}H_0(-\omega)$. Similarly $G_1(\omega) = -G_0(\pi - \omega)e^{-j\omega(2N-1)}$.

PROOF:

- 1. Must satisfy no-aliasing condition $G_0(\omega)H_0(\omega + \pi) + G_1(\omega)H_1(\omega + \pi) = 0.$
- 2. Substituting for $H_0(\omega)$ and $H_1(\omega)$ gives $G_0(\omega)G_0(\pi - \omega) + G_1(\omega)G_1(\pi - \omega) = 0.$
- 3. Replacing ω with $\pi \omega$ in $G_1(\omega)$ above gives $G_0(\omega)G_0(\pi - \omega) + (-G_0(\pi - \omega)e^{-j\omega(2N-1)})$ $\times (-G_0(\pi - (\pi - \omega))e^{-j(\pi - \omega)(2N-1)})$ $= G_0(\omega)G_0(\pi - \omega) - G_0(\pi - \omega)G_0(\omega) = 0$ QED using $-e^{-j\pi(2N-1)} = 1$.
- 4. Must satisfy perfect-reconstruction $G_0(\omega)H_0(\omega) + G_1(\omega)H_1(\omega) = 2.$
- 5. Substituting for $G_0(\omega)$ and $G_1(\omega)$ gives $|H_0(\omega)|^2 + |H_0(\omega + \pi)|^2 = 2$ QED.
- 6. Need time reversal between g_0, h_0 AND h_0, h_1 ;
- 7. odd-valued time shift between g_0, g_1 and h_0, h_1