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1. REVIEW OF DIGITAL SIGNAL PROCESSING

1.1 z-Transform

Digital or discrete-time signal or sequence:
x(n) = {3, 1, 4, 1, 5, 9, 2, 6, 5 . . .}(x(0) = 3)

z−xformof x(n) = Z{x(n)} = X(z) =
∞∑

n=−∞
x(n)z−n

= 3 + 1z−1 + 4z−2 + 1z−3 + 5z−4 + 9z−5 + . . .

TO COMPUTE Z−1: 1. Use DTFT−1 below.
2. Read off coeff. of power series of X(z).
3. Partial fractions and Z{an1(n)} = z

z−a .

Properties of z-Transform:

1. Maps convolution to multiplication:
w(n) = x(n) ∗ y(n) → W (z) = X(z)Y (z).

2. Delay: Z{x(n−D)} = z−DX(z).
3. Compare to Laplace transform: es → z.
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1.2 Discrete-Time Fourier Transform (DTFT)

Digital or discrete-time signal or sequence:
x(n) = {3, 1, 4, 1, 5, 9, 2, 6, 5 . . .}(x(0) = 3)

DTFT{x(n)} = X(ejω) =
∞∑

n=−∞
x(n)e−jωn = X(z)|z=ejω

= 3 + 1e−jω + 4e−2jω + 1e−3jω + 5e−4jω + . . .

DTFT−1{X(ejω)} = x(n) =
1
2π

∫ π

−π

X(ejω)ejωndω

Properties of DTFT:

1. Also maps convolution to multiplication:
w(n) = x(n) ∗ y(n) → W (ejω) = X(ejω)Y (ejω)

2. Delay: DTFT{x(n−D)} = e−jωDX(ejω).
3. Compare to discretized Fourier transform:
F{x(t)

∑∞
n=−∞ δ(t− n)} = DTFT{x(n)}

DTFT is F of sampled cont.-time signal.
4. PERIODIC in ω with period 2π.
5. DUAL of Fourier SERIES: x(n) are the Fourier

series coeffs of the periodic function X(ejω).
6. DTFT is Z evaluated on unit circle |z| = 1.
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1.3 Discrete-Time Frequency Response

NOTE: discrete in one Fourier domain
↔periodic in other Fourier domain.
EXAMPLES: Fourier series, DTFT.

SYSTEM: Linear (discrete)time-invariant
with discrete-time impulse response h(n).
STEADY-STATE INPUT: cos(ωon)
Note this is a SAMPLED sinusoid.
STEADY-STATE OUTPUT: M cos(ωon + θ)
for some amplitude M and phase shift θ.

cos(ωon) → h(n) → |H(ejωo)| cos(ωon+ARG[H(ejωo)])

where H(ejω) = DTFT{h(n)}=freq. response.
Just like phasors and cont. freq. response,
except now everything PERIODIC in ω.

Lowpass and Highpass Filters

h(n) =
sin(an)

πn
↔ H(ejω) =

{
1, if |ω| < a;
0, if a < |ω| < π

h(n)(−1)n ↔ H(ej(ω+π))

Modulate by (−1)n: lowpass→highpass
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1.3 Discrete-Time Frequency Response, continued

EXAMPLE: Numerical Integration

GOAL: Compute y(t) =
∫ t

−∞ x(t′)dt′ numerically.
IDEAL INTEGRATOR: H(ω) = 1

jω .
RUNNING SUM: y(n) = y(n− 1) + x(n) →

H(ejω) = Y (ejω)
X(ejω) = 1

1−e−jω .
SIMPSON’S RULE:

y(n) = y(n−2)+[x(n)+4x(n−1)+x(n−2)]/3 →
H(ejω) = 1+4e−jω+e−2jω

3(1−e−2jω)

|H(ejω)| for
⇐ideal integrator (X)⇒
⇐running sum rule
Simpson’s rule⇒

COMMENTS:
1. Both rules work well for small ω
2. Simpson’s rule better for midrange ω
3. Simpson’s rule BLOWS UP at ω = π

2 !
Say what? Try computing

∫ 10

0
cos(πt)dt = 0:

RUNNING SUM: y(10) =
∑10

1 (−1)n = 0.
SIMPSON’S RULE: y(10) =

1
3 (1− 4 + 2− 4 + 2− 4 + 2− 4 + 2− 4 + 1) = −3.33

WARNING: Oversample if using Simpson’s rule!
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2. MULTIRATE DIGITAL SIGNAL PROCESSING

2.1 Upsampling

x(n) = {3, 1, 4, 1, 5, 9, 2, 6, 5 . . .}(x(0) = 3)
The upsampled (by 2) signal xu(n) is
xu(n) = {3, 0, 1, 0, 4, 0, 1, 0, 5, 0, 9 . . .}
x(n) →↑ 2 → xu(n); xu(n) =

{
x(n/2), if n is even;
0, if n is odd

In the frequency domain:
Xu(ejω) = X(e2jω) now has period π:

Can recover x(n) from xu(n):
1. First lowpass filter |ω| < π

2
2. Then downsample (see below).

Interpolate x(n): upsample+lowpass filter

Filtering replaces zeros in xu(n) with values obtained
from sampling a bandlimited continuous-time signal.
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2.2 Downsampling

x(n) = {3, 1, 4, 1, 5, 9, 2, 6, 5 . . .}(x(0) = 3)
The downsampled (by 2) signal xd(n) is
xu(n) = {3, 4, 5, 2, 5, 5 . . .}
x(n) →↓ 2 → xd(n); xd(n) = x(2n)

In the frequency domain:
Xd(ejω) = [X(ejω/2)+X(ej(ω+2π)/2)]/2 aliased

Can recover x(n) from xd(n)
ONLY IF X(ejω) = 0 for |ω| > π

2
↔ X(ejω) bandlimited ↔ x(t) oversampled× 2

Can lowpass x(n), then downsample.
Decimate x(n): lowpass filter+downsample

Since the lowpass-filtered signal is now oversam-
pled, we can subsample without losing information.
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2.3 Multirate Signal Processing

Can change sample rate by any rational factor L/M :
1. Upsample by L(↑ L); lowpass filter(cutoff= π

L )
2. Lowpass filter(cutoff= π

M ); Downsample by M .
3. Must upsample first to ensure no aliasing!

Comments:

1. Combine (1b),(2a)→single filter
2. X(ejω) bandlimited to |ω| < πL

M if L < M .
3. The following commute:

a. ↑ L AND ↓ M IF L,M relatively prime
If L = U , require no aliasing occur

b. Downsampling AND filtering:
U(z) →↓ 2 → H(z) → Y (z) equivalent to
U(z) → H(z2) →↓ 2 → Y (z).

c. Upsampling AND filtering:
U(z) → H(z) →↑ 2 → Y (z) equivalent to
U(z) →↑ 2 → H(z2) → Y (z).

4. Multirate systems: linear, time-varying periodic.
5. Multirate SP equivalent to reconstructing continuous-

time signal and then resampling, but faster.
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2.4 Applications of Multirate SP

1. Interfacing systems with different clock rates
2. Implement fractional time delays

H(ejω) = ejωD, D rational
All-pass, linear phase filter

3. Narrowband lowpass filters:
a. Have signal sampled at 8 kHz

Want lowpass filter with cutoff=80 Hz
b. Decimate signal by 8kHz

2×80Hz = 50
All but lowest 80 Hz of the signal aliased,
but DON’T CARE!

c. Implement lowpass filter at decimated rate
→FIR filter much shorter

4. Can implement multirate filtering in several smaller
stages of decimation/interpolation, instead of
doing it all in one big stage.
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2.5 Subband Coding

IDEA: Divide up speech signal into frequency
bands, each band an octave (factor of 2) wide.

1. Code each band separately.
2. Each stage splits lowpass signal from previous

band into low(er)pass and highpass signals.
3. Each stage is the first half (analysis part) of a

quadrature mirror filter (QMF) (see below)
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2.6 Polyphase Transforms

Periodically time-varying system:
Input u(n) →output y(n) implies
Input u(n + Nm) →output y(n + Nm).

EXAMPLE: Downsample, then upsample.

Polyphase Transform:

Map signal x(n) into collection of signals
{xi(n), i = 0, 1 . . . N − 1} where xi(n) = x(nN + i)

1. xi(n) shifted and downsampled x(n)
Each has different phase→”polyphase”

2. Recover x(n) by interleaving xi(n)
3. Write using z-transform as

X(z) =
∑N−1

i=0 ziXi(zN )
where Xi(z) =

∑
n x(nN − i)z−n.

For example, X(z) = X0(z2) + zX1(z2).
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3. PERFECT-RECONSTRUCTION FILTER BANKS

Split up signal into different frequency bands.
Then reassemble bands into original signal.

3.1 Quadrature-Mirror Filters

1. H0(ejω)=lowpass filter
2. H1(ejω)=mirror-image highpass filter:

H1(ejω) = H0(ej(ω+π)); h1(n) = (−1)nh0(n)
H1(ejω) is reflection of H0(ejω) about ω = π

2 .
3. Why do we need these mirror conditions?
4. In sequel use H(ω) instead of H(ejω).
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3.1 Quadrature-Mirror Filters, continued

3. Condition for perfect reconstruction
(x̂(n) = x(n)):

a. Signal at midpoint of top rail is
Xuppermid(ω) = [H0(ω

2 )X(ω
2 )+H0(ω+2π

2 )X(ω+2π
2 )]/2

using decimation formula above.

b. Signal at midpoint of lower rail is
Xlowermid(ω) = [H1(ω

2 )X(ω
2 )+H1(ω+2π

2 )X(ω+2π
2 )]/2

using decimation formula above.

c. Output signal is
X̂(ω) = G0(ω)Xuppermid(2ω)+G1(ω)Xlowermid(2ω)

using interpolation formula above.

d. Condition for perfect reconstruction is
X(ω) = X̂(ω) = [G0(ω)H0(ω)+G1(ω)H1(ω)]X(ω)/2
+[G0(ω)H0(ω+π)+G1(ω)H1(ω+π)]X(ω+π)/2

by substituting (b) in (c).
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3.1 BIorthogonal QMFs, continued

4. Condition for perfect reconstruction is
X(ω) = X̂(ω) = [G0(ω)H0(ω)+G1(ω)H1(ω)]X(ω)/2
+[G0(ω)H0(ω+π)+G1(ω)H1(ω+π)]X(ω+π)/2

a. Want second term(aliasing)=0
for perfect reconstruction:

G0(ω)H0(ω + π) + G1(ω)H1(ω + π) = 0
→ G0(ω) = H1(ω + π), G1(ω) = −H0(ω + π).

Now impose BIorthogonality:
synthesis filters g(n) = ±analysis filters h(n):
G0(ω) = H0(ω); G1(ω) = −H1(ω) = −H0(ω + π)

g0(n) = h0(n); g1(n) = −(−1)nh0(n).

b. Want first term=1 after cancel X(ω):
G0(ω)H0(ω) + G1(ω)H1(ω) = 2.

Substituting expressions from (a):
H2

0 (ω)−H2
1 (ω) = H2

0 (ω)−H2
0 (ω + π) = 2.

Problem: Impossible! (try ω → ω + π). Instead,

H2
0 (ω)−H2

1 (ω) = H2
0 (ω)−H2

0 (ω+π) = 2ejω(2N−1)

X̂(ω) = X(ω)ejω(2N−1) → x̂(n) = x(n− 2N + 1)
(perfect reconstruction except for a delay).
Why 2N − 1? Need consistency for ω → ω + π.

Only FIR solution: Haar H(ω) = 1√
2
(1 + e−jω)

(see V&K, bottom of p.121)
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3.2 Orthogonal 2-Channel Filter Banks

Now make a slight but significant change:
g(n) = ±time− reversed filters h(−n)

G0(ω) = H0(−ω); G1(ω) = H1(−ω)

g0(n) = h0(2N − 1− n); g1(n) = h1(2N − 1− n)

Also g1(n) = (−1)ng0(2N − 1− n) (V&K, p.125)

Repeating above→Smith-Barnwell condition

|H0(ω)|2 + |H0(ω + π)|2 = 2
|G0(ω)|2 + |G0(ω + π)|2 = 2 instead of
H2

0 (ω)−H2
1 (ω) = H2

0 (ω)−H2
0 (ω+π) = 2ejω(2N−1)

Interpretation: Power complementary.

Also get
G0(ω)G1(−ω) + G0(ω + π)G1(π − ω) = 0

instead of the aliasing=0 condition
G0(ω)H0(ω + π) + G1(ω)H1(ω + π) = 0.
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3.2 Orthogonal 2-Channel Filter Banks, cont.

Using V&K modulation matrix notation:

BIorthogonal QMFs

G0(ω)H0(ω) + G1(ω)H1(ω) = 2
G0(ω)H0(ω + π) + G1(ω)H1(ω + π) = 0
can be written as[

G0(ω) G1(ω)
G0(ω + π) G1(ω + π)

] [
H0(ω) H0(ω + π)
H1(ω) H1(ω + π)

]
=

[
2 0
0 2

]

Orthogonal 2-Channel Filter Banks

|G0(ω)|2 + |G0(ω + π)|2 = 2
G0(ω)G1(−ω) + G0(ω + π)G1(π − ω) = 0
can be written as[

G0(ω) G1(ω)
G0(ω + π) G1(ω + π)

] [
G0(−ω) G0(π − ω)
G1(−ω) G1(π − ω)

]

=
[

G0,0 G0,1

G1,0 G1,1

] [
G0,0 G0,1

G1,0 G1,1

]H

=
[

2 0
0 2

]

consistent with g(n) = ±h(−n).
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3.3 Filter Design

Using Spectral Factorization

Define P (ω) = |G0(ω)|2. Then
|G0(ω)|2 + |G0(ω+π)|2 = 2 → P (ω)+P (ω +π) = 2.

1. Find half-band lowpass filter P (ω) where
P (ω) + P (ω + π) = 2
Symmetry about ω = π/2.

2. Then spectral factorization of
P (z) = G0(z)G0(1/z):
G0(z) has all zeros inside |z| = 1.
P (ω) lowpass → G0(ω) lowpass.

EXAMPLE: Daubechies Dn Basis

Choose P (z) = (1 + z)n(1 + z−1)nR(z)
1. 2n zeros at ω = π
2. Choose R(z) so P (z) + P (−z) = 2

a. R(z) is an autocorrelation:
R(z) = R(1/z) and R(ejω) > 0
since will spectrally factor.

3. Equate coefficients→matrix eqn.
4. For details see V&K p.131.
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3.4 Subband Coding=Discrete Wavelet Xform

At each mth stage, signal is split into:
1. A detail (highpass) signal W2mx(n)
2. An average (lowpass) signal xm(n)
3. Each stage is the first half (analysis part) of a

quadrature mirror filter (QMF)!
4. Can reassemble signal from

a. its detail signals and
b. the final average signal

using second half (synthesis part) of QMF

Analysis (Compute Wavelet Xform)

average: xm(n) =
∑

i xm−1(i)h0(2n− i)
detail: W2mx(n) =

∑
i xm−1(i)h1(2n− i)

These formulae combine filtering and subsampling.

Synthesis (Reconstruct Signal)

xm−1(n) =
∑

i h0(2i−n)xm(i)+h1(2i−n)W2mx(i)

Note time reversal between analysis and synthesis.
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3.4 Subband Coding=Discrete Wavelet Xform, cont.

Can also use direct definitions:

Analysis (Compute Wavelet Xform)

average: xm(n) =
∑

i x(i)hm
0 (2mn− i)

detail: W2mx(i) =
∑

i x(i)hm
1 (2mn− i)

Synthesis (Reconstruct Signal)

x(n) =
∑L

m=1

∑
iW2mx(i)hm

1 (2mi− n)

+
∑

i xL(i)hL
0 (2Li− n)

Filters at Each Resolution

hm+1
0 (n) =

∑
i h0(i)hm

0 (n− 2mi)
hm+1

1 (n) =
∑

i h1(i)hm
0 (n− 2mi)

Orthogonality of Basis Functions

< hm
1 (2mn−i), hm′

1 (2m′
n′−i) >= δ(m−m′)δ(n−n′)

< hm
1 (2mn− i), hm′

0 (2m′
n′ − i) >= 0, for m′ > m

< hm
0 (2mn− i), hm

0 (2mn′ − i) >= δ(n− n′)
where < f(n), g(n) >=

∑
n f(n)g∗(n) if < ∞.
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