STOCHASTIC FRACTALS USING WAVELETS

DEF: A stochastic fractal is a self-similar random process x(t) **Wide-sense self-similar:** Self-similar mean and covariance $E[x(t)] = a^{-H}E[x(at)]; \quad E[x(t_1)x(t_2)] = a^{-2H}E[x(at_1)x(at_2)].$ **Strict-sense self-similar:** $x(t), a^{-H}x(at)$ same joint pdfs. Gaussian process: strict-sense=wide-sense. Assume in sequel.

Examples of Stochastic fractal processes:

- 1. White Gaussian processes: H = -1/2 since $a\delta(at) = \delta(t)$
- 2. Wiener process=integrated white Gaussian process =continuous-time random walk=Brownian motion:

$$E[x(t_1)x(t_2)] = \sigma^2 MIN[t_1, t_2] = a^{-1}\sigma^2 MIN[at_1, at_2].$$

- 3. 1/f processes: $S_x(\omega) = \sigma^2 / |\omega|^{2H+1}$ where $S_x(\omega) = \mathcal{F}\{R_x(\tau)\}$ and $R_x(\tau) = E[x(t)x(t-\tau)]$.
 - a. Valid over decades of ω . Sample paths fractals.
 - b. Stock market indices; EEGs; EKGs; river levels; noise
 - c. Wiener process: $2H + 1 = 2\frac{1}{2} + 1 = 2$ makes sense: integrate white process $\rightarrow S_x(\omega) = 1/|\omega|^2$.

Properties of 1/f processes:

1. Time domain: Let w(t) be 0-mean white Gaussian. Then:

$$x(t) = \frac{1}{\Gamma(H+\frac{1}{2})} \left[\int_{-\infty}^{t} |t-\tau|^{H-\frac{1}{2}} w(\tau) d\tau - \int_{-\infty}^{0} |\tau|^{H-\frac{1}{2}} w(\tau) d\tau \right].$$

- a. Second term \rightarrow stable system (Barton and Poor).
- b. Fractal dimension of sample paths = 2 H, 0 < H < 1
- c. This x(t) has stationary self-similar increments.
- d. $H = 1/2 \rightarrow$ usual Wiener process. In fact:

$$E[x(t_1)x(t_2)] = [\Gamma(1-2H)\frac{\cos(\pi H)}{2\pi H}][|s|^{2H} + |t|^{2H} - |t-s|^{2H}].$$

2. Some Fourier and Laplace relations:

a.
$$\mathcal{L}\left\{\frac{1}{\Gamma(H+\frac{1}{2})}t^{H-\frac{1}{2}}\mathbf{1}(t)\right\} = \frac{1}{s^{H+\frac{1}{2}}}, \ \mathbf{1}(t) = \text{unit step.}$$

b. $\mathcal{F}^{-1}\left\{\frac{1}{|\omega|^{2H+1}}\right\} = |t|^{2H}\frac{1}{2\Gamma(2H+1)\cos((H+\frac{1}{2})\pi)}$

3. Not integrable \rightarrow not really a valid power spectral density.

- a. $H < 0 \rightarrow$ slow rolloff as $\omega \rightarrow \infty \rightarrow$ "UV catastrophe." Non-integrable over $\omega \rightarrow$ high-frequency power.
- b. $H > 0 \rightarrow$ blows up as $\omega \rightarrow 0 \rightarrow$ "infrared catastrophe." Non-integrable near origin \rightarrow suggests non-stationarity.
- 4. **DEF** (Wornell): x(t) is 1/f process if bandpass filtering $\rightarrow S_x(\omega) = \sigma^2/|\omega|^{2H+1}$ in the pass band.

Characterization of fractal processes using wavelets:

1. Let x_n^m be 0-mean uncorrelated random variables with $\sigma_{x_n^m}^2 = 2^{-(2H+1)m} \sigma^2$.

Then
$$x(t) = \sum \sum x_n^m 2^{m/2} \psi(2^m t - n)$$
 has time-averaged psd
 $S_x(\omega) = \sigma^2 \sum 2^{-(2H+1)m} |\Psi(2^{-m}\omega)|^2 \to S_x(\omega) = 2^{k(2H+1)} S_x(2^k \omega)$

which is self-similar between octaves.

a. Time-averaging needed since x(t) nonstationary.

b.
$$\psi(t)$$
 must be regular: $\Psi(\omega) \simeq 1/|\omega|^{H+\frac{1}{2}}$.

c.
$$H = -\frac{1}{2}$$
 \rightarrow white process $(\sigma_{x_n^m}^2 = \text{constant}; S_x(\omega) = 1)$

2. Given 1/f process x(t) and $x_n^m = \int x(t) 2^{m/2} \psi(2^m t - n) dt$,

$$E[x_n^m x_{n'}^{m'}] = \int \frac{2^{-(m+m')/2} \sigma^2}{2\pi |\omega|^{2H+1}} \Psi(2^{-m}\omega) \Psi^*(2^{-m'}\omega) e^{-j\omega(n2^{-m}-n'2^{-m'})} d\omega$$

- a. Stationary at fixed scale m = m' (n n' only).
- b. $\rho_{n,n'}^{m,m'}$ stationary across scales if $2^{-m}n = 2^{-m'}n'$.
- c. If $\psi(t)$ has M vanishing moments (e.g., Battle-Lemarie), $\rho_{n,n'}^{m,m'} \simeq 1/|2^{-m}n - 2^{-m'}n'|^{2M-2H-1}$.