MALLAT'S FAST WAVELET ALGORITHM: RECURSIVE COMPUTATION OF CONTINUOUS-TIME WAVELET COEFFICIENTS

Recall discrete-time wavelet series can be computed 2 ways:

1. Direct computation of transform:
average: $x_{m}(n)=\sum_{i} x(i) h_{0}^{m}\left(2^{m} n-i\right)$
detail: $\mathcal{W}_{2^{m}} x(i)=\sum_{i} x(i) h_{1}^{m}\left(2^{m} n-i\right)$
Direct computation of inverse transform:
$x(n)=\sum_{m=1}^{L} \sum_{i} \mathcal{W}_{2^{m}} x(i) h_{1}^{m}\left(2^{m} i-n\right)+\sum_{i} x_{L}(i) h_{0}^{L}\left(2^{L} i-n\right)$
where the filters h_{i}^{M} are computed recursively using
$h_{0}^{m+1}(n)=\sum_{i} h_{0}(i) h_{0}^{m}\left(n-2^{m} i\right)$
$h_{1}^{m+1}(n)=\sum_{i} h_{1}(i) h_{0}^{m}\left(n-2^{m} i\right)$
2. Recursive computation of transform:
initialization: $x_{0}(n)=x(n)$
average: $x_{m}(n)=\sum_{i} x_{m-1}(i) h_{0}(2 n-i)$
detail: $\mathcal{W}_{2^{m}} x(n)=\sum_{i} x_{m-1}(i) h_{1}(2 n-i)$
Note these formulae combine filtering and subsampling.
Recursive computation of inverse transform:

$$
x_{m-1}(n)=\sum_{i} h_{0}(2 i-n) x_{m}(i)+h_{1}(2 i-n) \mathcal{W}_{2^{m}} x(i)
$$

$$
\text { Stop at } x_{0}(n)=x(n)
$$

Note time reversal between analysis and synthesis filters. Discrete-time wavelets implemented by subband coder.

Continuous-time wavelet transform is computed directly:

$$
\begin{aligned}
& x(t)=\sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} x_{j}^{i} 2^{-i / 2} \psi\left(2^{-i} t-j\right) \\
& x_{j}^{i}=\int_{-\infty}^{\infty} x(t) 2^{-i / 2} \psi\left(2^{-i} t-j\right)
\end{aligned}
$$

Can also use scaling function to truncate sum over scale:

$$
\begin{aligned}
& x(t)=\sum_{i=-\infty}^{J} \sum_{j=-\infty}^{\infty} x_{j}^{i} 2^{-i / 2} \psi\left(2^{-i} t-j\right) \\
& \quad+\sum_{j=-\infty}^{\infty} \tilde{x}_{j}^{J} 2^{-J / 2} \phi\left(2^{-J} t-j\right) \\
& \tilde{x}_{j}^{J}=\int_{-\infty}^{\infty} x(t) 2^{-J / 2} \phi\left(2^{-J} t-j\right)
\end{aligned}
$$

Compare to discrete-time direct computation.
Is there any continuous-time counterpart to recursive computation of the discrete-time wavelet series?

There is! The fast wavelet algorithm (Mallat 1990)
To link discrete-time and cont-time, recall 2 -scale eqns.
$\phi(t)=\sum_{n=-\infty}^{\infty} g_{0}(n) 2^{1 / 2} \phi(2 t-n)$
$\psi(t)=\sum_{n=-\infty}^{\infty} g_{1}(n) 2^{1 / 2} \phi(2 t-n)$
Let $t \rightarrow 2^{-i} t-j$, multiply by $2^{-i / 2} x(t)$ and $\int_{-\infty}^{\infty} d t$:
$\tilde{x}_{j}^{i}=\sum_{n=-\infty}^{\infty} g_{0}(n) \tilde{x}_{n+2 j}^{i-1} ; \quad x_{j}^{i}=\sum_{n=-\infty}^{\infty} g_{1}(n) \tilde{x}_{n+2 j}^{i-1}$
Since $g_{i}(n)=h_{i}(-n), i=0,1$ we can rewrite these as
$\tilde{x}_{j}^{i}=\sum_{n=-\infty}^{\infty} h_{0}(n) \tilde{x}_{2 j-n}^{i-1}=\sum_{n=-\infty}^{\infty} h_{0}(2 j-n) \tilde{x}_{n}^{i-1}$
$x_{j}^{i}=\sum_{n=-\infty}^{\infty} h_{1}(n) \tilde{x}_{2 j-n}^{i-1}=\sum_{n=-\infty}^{\infty} h_{1}(2 j-n) \tilde{x}_{n}^{i-1}$
Fastest way to compute cont-time wavelet expansion:

1. Compute \tilde{x}_{j}^{J} at finest resolution J
2. Recursively compute \tilde{x}_{j}^{i} and x_{j}^{i} from \tilde{x}_{j}^{i-1}

Recall bigger $i \rightarrow$ coarser, so finer \rightarrow coarser
3. Purely discrete-time processing since wavelet coefficients
4. Implemented using subband coder!

