APPLICATION OF WAVELETS AND FRACTALS TO DETECTION OF CARDIAC ANOMALIES

PROBLEM: Detection of irregular heartbeat (premature ventricular contraction (PVC)).

- 1. Can lead to arrhythmia and heart attacks.
- 2. PVC localized in time, yet its high frequencies are indistinguishable from normal heartbeats. How to find?

SOLUTION: Take Daubechies wavelet transform.

- 1. Fine scales can't distinguish PVC from normal.
- 2. Coarse scales CAN detect PVC from normal heartbeats.

PROBLEM: Stenosis (narrowing of arteries) from too much cholesterol, etc. \rightarrow blockage.

IDEA: Stenosis \rightarrow turbulence \rightarrow heartSOUNDS.

- 1. Turbulence tends to be *fractal*: $\sigma_{x(at)}^2 = a^{-2H} \sigma_{x(t)}^2$ where H=Hurst exponent; (2 - H)=fractal dimension.
- 2. Wavelet xform $x_n^m = \int x(t) 2^{m/2} \psi(2^m t n) dt$. a. x(t) fractal $\rightarrow \sigma_{x_n^m}^2 = 2^{-(2H+1)m} \sigma^2$. b. Log-log plot of $\sigma_{x_m}^2$ vs. scale $m \to H$ from slope. **SOLUTION:** Compute variance in n of x_n^m .
- 1. Assume detail signals x_n^m are stationary in n. 2. PVC \rightarrow fractal $\rightarrow \sigma_{x_n^m}^2 = 2^{-(2H+1)m}\sigma^2$.
- 3. (2 H)=fractal dimension= $\begin{cases} 1.45 & \text{for normal} \\ 1.95 & \text{for PVC} \end{cases}$ Also, PVC \rightarrow line on log-log plot; normal \rightarrow no line

See over for plots; IEEE Spectrum May 1997 for details.