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INTRODUCTION

Q: What are we trying to do?
A: To obtain a ”time-local” Fourier transform

which can track time-varying spectral properties.

Fourier transform can’t track time variations of:

EX #1: x(t) =
{

sin(3t), if t < 4;
sin(5t), if t > 4.

EX #2: Chirp x(t) = ej(at)t = ejat2 :
frequency increases linearly with time.

EX #3: Speech, whale sounds, waves through lossy media.

DESIRED PROPERTIES

Wτ,ω{x(t)} is spectral density of x(t) for t ≈ τ .

We would like the following to hold:
1. Wτ,ω{x(t)} ≥ 0 (since it is a density)

2.
∫ ∫ Wτ,ω{x(t)}dτ dω =

∫ |x(t)|2dt (total energy conserved)

3. Marginals (more specific energy conservation):
a.

∫ Wτ,ω{x(t)}dω = |x(t)|2 (energy at time t)
b.

∫ Wτ,ω{x(t)}dt = |X(ω)|2 (energy at freq ω)
4. Shifts in time and frequency properly represented:

a. Wτ,ω{x(t− t0)} = Wτ−t0,ω{x(t)}
b. Wτ,ω{x(t)ejω0t} = Wτ,ω−ω0{x(t)}

PROBLEMS

1. Shorter time window→poor freq resolution.
2. Longer window→can’t track nonstationarities.
3. Must trade off time and frequency resolution.
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BASICS

1. Densities: A density is something you integrate to get
the quantity of interest:

a. Energy spectral density |X(ω)|2
→energy in band [ω0, ω0 + δ] is 2

2π |X(ω0)|2δ.
b. We really want ”time-freq density,” not ”distribution.”

2. Time-bandwidth product:
Regard |x(t)|2 ≥ 0 as a prob. density func. for t
and also regard |X(ω)|2 ≥ 0 as a pdf for ω.

a. ∆t=duration=σt

b. ∆ω=bandwidth=σω

c. Then (∆t)(∆ω) ≥ 1
2 ; equality for Gaussian.

3. x(t) = A(t)ejφ(t) → A(t)=amplitude; φ(t)=phase.

a. dφ
dt =instantaneous frequency.

b. Can’t define these from Re[x(t)] only. Leads to:

4. Analytic signal of x(t) is xa(t) = x(t)− jH{x(t)}.
a. Hilbert xform H{x(t)} = x(t) ∗ −1

πt
Transfer function: jSGN [ω] ↔ π

2 phase shift.

b. Xa(ω) =
{

2X(ω), if ω > 0;
0, if ω < 0.

c. EX: x(t) = cos(at) → xa(t) = ejat (quadrature)
d. x(t) causal→ Im[X(ω)] = H{Re[X(ω)]}.
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THE CONTINUOUS (MORLET) WAVELET TRANSFORM

Def’n: Continuous or Morlet wavelet xform:
Wa

b {x(t)} =
∫

x(t) 1√
a
ψ∗( t−b

a )dt, a > 0

1. Large a >> 0 →long time scale, coarse resolution.
Small 0 < a << 1 →short time scale, fine resolution.

2. Requirements on the mother wavelet ψ(t):
a. Ψ(0) = 0 →bandpass (important requirement).
b. C =

∫∞
0

|Ψ(ω)|2
|ω| dω < ∞.

This is satisfied in practice if Ψ(0) = 0
and if lim

|ω|→∞Ψ(ω) = 0 →no impulse in ψ(t).

3. Reconstruct x(t) from Wa
b {x(t)} using the formula

x(t) = 1
C

∫∞
0

∫ Wa
b {x(t)} 1√

a
ψ( t−b

a )db da
a2

Proof: See V&K p.302-3.

4. Properties:
a. Shift-invariant: Wa

b {x(t− t0)} = Wa
b−t0

{x(t)}.
b. Scale: Wa

b {x(t/c)} =
√
|c|Wa/c

b/c {x(t)}.
c. Parseval:

∫ |x(t)|2dt = 1
C

∫ ∫ |Wa
b {x(t)}|2 da db

a2 .
Proof: See V&K p.306-7.

5. Morlet wavelet: ψ(t) = 1
2π e−t2/2e−jω0t; Ψ(ω) = e−(ω−ω0)

2/2.
ω0 = 5.336 →1st peak of Re[ψ(t)]=half t = 0 value.

6. Sample: a = 2m, b = n2m →dyadic wavelet sampling.
This xform is heavily overdetermined and redundant.
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Localization Properties of Morlet Wavelet

Let the mother wavelet have duration δt
and bandpass spectrum [ω0 − δω

2 , ω0 + δω
2 ]:

1. a << 1 →only ”see” x(t) for b− aδt
2 < t < b + aδt

2 .

a. Narrow interval→can track nonstationarity (vary b).
b. Good time localization; ”see” fine details of x(t).
c. ”Zoom-in” on details of x(t).

2. a << 1 →”see” X(ω) for ω0
a − δω

2a < ω < ω0
a + δω

2a .

a. High and broad frequency band.
b. Octave-band filtering (constant width

center ).

3. a >> 1 →”see” x(t) for b− aδt
2 < t < b + aδt

2 .

a. Broad interval→can’t track nonstationarity.
b. Little time localization; ”see” coarse details of x(t).
c. ”Zoom-out” on x(t); see ”big picture.”

4. a >> 1 →only ”see” X(ω) for ω0
a − δω

2a < ω < ω0
a + δω

2a .

a. Low and narrow frequency band.
b. Octave-band filtering.
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THE SHORT-TIME FOURIER TRANSFORM (STFT)

Def’n: The STFT is defined as
STFTω,τ{x(t)} =

∫
w(t− τ)x(t)e−jωtdt.

1. Fourier xform of windowed (by w(t− τ)) x(t).
As τ changes, pick off x(t) at different times.

2. Requirements on the window w(t): None.
Usually normalize

∫ |w(t)|2dt = 1.
Should be localized in time and frequency to be useful.

3. Reconstruct x(t) from STFTω,τ{x(t)}:
x(t) = 1

2π

∫ ∫
STFTω,τ{x(t)}w(t− τ)ejωtdω dτ .

4. Properties:
a. STFT time-frequency tilings all same size.

Wavelet: t-f tilings have different sizes.
b. Parseval:

∫ |x(t)|2dt = 1
2π

∫ ∫ |STFTω,τ{x(t)}|2dω dτ .
Proof: V&K p.313-4.

c. Spectrogram: |STFTω,τ{x(t)}|2 is local psd.

5. Gabor function: w(t) = be−at2 ; W (ω) = b
√

π
a e−ω2/4a.

Best localization in time and frequency.

6. Sample: ω = mω0, τ = nτ0

since time-frequency tilings all have same size.
STFT is heavily overdetermined and redundant.
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TILINGS OF T-F PLANE: STFT AND MORLET

For both sampled STFT and Morlet wavelet xforms:
Express x(t) using basis functions localized in time and freq.

STFT:

1. Basis funcs={w(t− nτ0)ejmω0t, n, m ∈ integers}.
2. w(t)=window localized in time and frequency→

w(t− nτ0)ejmω0t centered at (t, ω) = (nτ0, mω0).

3. No scaling of t-f plane tiles.

4. STFTω,τ{x(t)} projects x(t) onto t-f tiles.

Continuous (Morlet) Wavelet Transform

1. Basis funcs={2−m/2ψ(2−mt− n), n, m ∈ integers}.
2. ψ(t)=basis localized in time and frequency→

ψ(2−mt− n) centered at (t, ω) = (2mn, 2−mω0).

3. Now t-f plane tiles are scaled by 2±m.

4. Wavelet xform projects x(t) onto t-f tiles.

See next page for figures of t-f tilings.
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SPECTROGRAM PROPERTIES

DEF: The spectrogram is |STFTω,τ{x(t)}|2.
1. Spectrogram = | ∫ w(t− τ)x(t)e−jωtdt|2

2. = 1
2π |

∫
W (ω − ω′)X(ω′)ejω′τdω′|2

using (generalized) Parseval’s theorem
and also F{w(t− τ)} = W (ω)e−jτω.

3. Can view as time-varying local energy spectral density.

Properties

1. Tradeoff between time and freq resolutions:
a. Narrow window→good time localization,

poor freq resolution (based on too little data).
b. Spectral peaks convolved with W (ω) →blurred.
c. Also, short time support→large bandwidth.

d. Wide window→good frequency resolution, poor
time localization (signal varies within window).

e. Can see these explicitly in above formulae:
tradeoff between compactness of w(t) and W (ω)
(time-bandwidth product).

2. Simple and actually does work fairly well.
3. Can use signal-dependent window w(t).
4. Does NOT satisfy marginals
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THE WIGNER-VILLE T-F DISTRIBUTION

Def’n: Wigner-Ville distribution is defined as

Wω,τ{x(t)} = 1
2π

∫
x(τ + t/2)x∗(τ − t/2)e−jωtdt.

1. This is 2-D Fourier dual of ambiguity function.
2. Dates back to 1932; used in quantum mechanics!
3. x(τ + t/2)x∗(τ − t/2) = instantaneous autocorrelation

of x(t) having lag t at time τ .
So this is instantaneous version of Sx(ω) = F{Rx(t)}.

4. Reconstruct x(t) from Wω,τ{x(t)}:
x(t)x∗(0) =

∫ ∫
Wω,τ=t/2{x(t)}ejωtdω dτ .

5. Nice Properties:
a. Marginals are preserved: If F{x(t)} = X(ω),∫

Wω,τ{x(t)}dτ = |X(ω)|2; ∫ Wω,τ{x(t)}dω = |x(τ)|2.
Compare to spectrogram: Total energy conserved:∫ ∫ |STFTω,τ{x(t)}|2dω dτ =

∫ |x(t)|2dt
but marginals not conserved separately.

b. Time and frequency shift-invariant:
Wω,τ{x(t− t0)ejω0t} = Wω−ω0,τ−t0{x(t)}

c. Sharp resolution: For chirp x(t) = ej(at)t = ejat2

(this is linearly increasing frequency ω = at)
Wω,τ{x(t)} = δ(ω − at) (try it!)

6. Bad Properties:
a. Not non-negative: Can have Wω,τ{x(t)} < 0!

Very bad for a purported energy spectral density!
b. Cross terms: Since nonlinear, no superposition!

Solution: Use RID (reduced interference distribution)
of Choi-Williams (insert kernel which windows in t-f).
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More Properties of Wigner Distribution

1. x(t) = A(t)ejφ(t)

→average freq at t is
∫

ωWω,τ{x(t)}dω∫
Wω,τ{x(t)}dω

= dφ
dt

=instantaneous frequency, as it should!

2. Product: Wω,τ{x1(t)x2(t)} =
∫

Wω′,τ{x1(t)}Wω−ω′,τ{x2(t)}dω′

Product in time→convolution in freq.

3. Convol: Wω,τ{x1(t)∗x2(t)} =
∫

Wω,τ ′{x1(t)}Wω,τ−τ ′{x2(t)}dτ ′

Product in freq→convolution in time.

4. Example of cross terms: x(t) = ejω1t + ejω2t →
Wω,τ{x(t)} = δ(ω−ω1)+δ(ω−ω2)+2δ(ω− ω1+ω2

2 ) cos(ω2−ω1)t

5. Can compute in frequency domain as

Wω,τ{x(t)} =
∫

x(τ + t/2)x∗(τ − t/2)e−jωtdt

= 1
2π

∫
X(ω − θ/2)X∗(ω + θ/2)e−jτθdθ

using (generalized) Parseval’s theorem on Ft→θ

and also F{x(t− τ)} = X(θ)e−jτθ.
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CHOI-WILLIAMS (RID) T-F DISTRIBUTION

Def’n: The Choi-Williams t-f distribution,
a type of RID (Reduced Interference Distribution):

CWω,τ{x(t)} =
∫ ∫

1
|t|k(u−τ

t )x(u+t/2)x∗(u−t/2)e−jωtdu dt.

where the kernel k(t) = 1√
2πσ2 e−t2/(2σ2)

1. Advantages:
a. Kernel k(t) tends to suppress cross terms, at the price

of reducing resolution.
b. Marginals still satisfied for any σ.

2. Can trade these off by varying σ:
a. σ → 0: k(t) → δ(t) →Wigner→cross terms.
b. σ →∞: k(t) → k →no cross terms, no resolution!

3. Other choices of kernel k(t) can be made.

EXAMPLES: SUPPRESSION OF CROSS TERMS

Example 1: x(t) = ej1t + ej9t

(a): Wigner (b): Choi-Williams σ = 0.001 (c): σ = 0.003

Example 2: x(t) = e(a1+jb1)t
2/2+jω1t + e(a2+jb2)t

2/2+jω2t

(sum of 2 chirps; instantaneous freqs ω = bit+ωi, i = 1, 2)
(a): Wigner (b): Choi-Williams
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COHEN’S CLASS Of TFDS USING KERNELS

IDEA (L. Cohen): Define time-freq dist. (TFD) as:

1. Define ambiguity function Aθ,τ{x(t)} as

Aθ,τ{x(t)} =
∫

x(u + τ/2)x∗(u− τ/2)ejθudu.

Note 4π2Wω,t{x(t)} = FF{Aθ,τ{x(t)}}
=

∫ ∫
Aθ,τ{x(t)}e−jθte−jωτdθ dτ .

2. Define W ′
ω,t{x(t)} as

W ′
ω,t{x(t)} = 1

4π2

∫ ∫
k(θ, τ)Aθ,τ{x(t)}e−jθte−jωτdθ dτ

for some kernel k(θ, τ).

Note this convolves Wω,τ{x(t)} with F−1F−1{k(θ, τ)}.
Examples:

1. k(θ, τ) = 1 →Wigner-Ville (easy).
2. k(θ, τ) = e−θ2τ2/σ →Choi-Williams using

∫
ejθ(u−t)e−θ2τ2/σdθ =

√
σπ
τ e−

σ
4τ2 (u−t)2

3. Other choices possible (see below).
4. To satisfy marginals, need k(0, τ) = k(θ, 0) = 1.

To satisfy energy conservation, need k(0, 0) = 1.
5. Kernel can be made signal-dependent (Baraniuk-Jones).
6. Recover signal from W ′

ω,t{x(t)} using

2πs(t)s∗(0) =
∫ ∫ ∫ W ′

ω,u{x(t)}
k(θ,τ) ejωtejθue−jθt/2du dω dθ

For spectrogram, how can we recover signal from |F|?
Is magnitude of STFT, not F !
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RECONSTRUCTION OF DISPERSIVE LAYERED MEDIA
(Chien and Yagle, 1989)

Given:
1. Dispersive (frequency-dependent absorption)

layered (absorption, density vary with depth) medium.
2. Reflection response R(t) of medium to an impulse

(deconvolved from actual source explosion signal)

Goal:
To reconstruct density ρi and absorption Qi

in ith layer of acoustic medium for all i.

Assumptions:

1. Absorption factor=e
− |ω|

2cQi
z

z=distance in ith layer, c=wave speed.
2. Reflection coefficient ri = ρici−ρi+1ci+1

ρici+ρi+1ci+1
.

3. Neglect multiple reflections.
4. Layers equally thick (use very thin layers).

Approach:
1. Compute time-freq distribution of R(t).
2. Window tfd in time to separate layer reflections.
3. Intervals between layer reflections→ ci.
4. Fit exponential curve to freq variation at each time.

”Time constant”=2
∑

i Qici (actually fit line to log).
5. Amplitude of tfd (intercept)→ ri → ρi.
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TRACKING NON-CONSTANT BLOOD FLOW IN MRI
(Sahiner and Yagle, 1989)

Given:
1. Moving object (e.g., blood) undergoing MRI.

Motion blurs MRI signal; must deconvolve it.
2. MRI signal of moving object.

Both motion and object are unknown.

Goal:
To reconstruct both the unknown velocity
and the unknown (nuclear) spin density

Assumptions:
1. Everything occurs in one direction (projection).
2. Velocity affine function of location

a. Reasonable for thin MRI slice excitation
of steady-state flow in blood vessel.

b. Use different functions in each slice→
trapezoidal approx. to velocity vs. location.

3. ρ̂( k
v1

(ev1t − 1)) ≈constant.

Approach:
1. Compute time-freq distribution of MRI signal

x(t) = e
j2πk

v0
v2
1
(ev1t−v1t−1)

ρ̂( k
v1

(ev1t − 1))

velocity v(x) = v0 + v1x, ρ̂(k) = F{spin density(x)}.
2. Instant freq=dφ

dt = kv0
v1

(ev1t − 1)
3. Trajectory of tfd maxima→ v0, v1.
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