INTRODUCTION TO TIME-FREQUENCY DISTRIBUTIONS

Andrew E. Yagle
Dept. of Electrical Engineering and Computer Science
The University of Michigan, Ann Arbor MI

(©1996 by Andrew E. Yagle

(Preliminary version)



OUTLINE OF PRESENTATION

. Introduction

a. What are we trying to do?

b. Desired properties of time-frequency dists
. Basics

a. Densities

b. Time-bandwidth product

c. Analytic signals

. Continuous (Morlet) wavelet transform

a. Basic properties

b. Localization properties

. Short-Time Fourier Transform (STFT)

a. Basic properties

b. Time-frequency plane tilings

c. Spectrogram properties

. Wigner-Ville distribution

a. Basics

b. Properties

c. More properties

. Choi-Williams (RID) distribution

a. Basic idea

b. Examples

. Cohen’s class of TFDs using kernels

a. Basic idea

b. Examples

. Applications of TFDs

a. Reconstruction of dispersive layered media
b. Tracking non-constant blood flow in MRI



> O

EX #1:
EX #2:

EX #3:

INTRODUCTION

What are we trying to do?
To obtain a ”time-local” Fourier transform
which can track time-varying spectral properties.

Fourier transform can’t track time variations of:
[ sin(3t), ift < 4;

z(t) = {sin(fnf), if ¢ > 4.

Chirp z(t) = ed(@t)t = gjat’.

frequency increases linearly with time.

Speech, whale sounds, waves through lossy media.

DESIRED PROPERTIES
Wi w{z(t)} is spectral density of x(t) for t =~ 7.
We would like the following to hold:

- Wrw{z(t)} > 0 (since it is a density)

[ [Wr{z(t)}dr dw = [ |x(t)|?dt (total energy conserved)

Marginals (more specific energy conservation):

a. [ Wro{z(t)}dw = |z(t)]? (energy at time ¢)
b. [Wr,{z(t)}dt = | X (w)|? (energy at freq w)
Shifts in time and frequency properly represented:
a. Wro{z(t __tO)} = Wr—ty.0{z(l)}
b. Wro{z(t)e?'} = Wrwowo{z(t)}

o

PROBLEMS

Shorter time window—poor freq resolution.
Longer window—can’t track nonstationarities.
Must trade off time and frequency resolution.



BASICS

. Densities: A density is something you integrate to get
the quantity of interest:
a. Energy spectral density | X (w)
—energy in band [wg,wp + 8] is =] X (wo)[?9.
b. We really want ”time-freq density,” not ”distribution.’
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. Time-bandwidth product:
Regard |z(t)|* > 0 as a prob. density func. for ¢
and also regard | X (w)|? > 0 as a pdf for w.

a. At=duration=0y

b. Aw=bandwidth=c_

c. Then (At)(Aw) > %; equality for Gaussian.

. x(t) = A(t)e??D) — A(t)=amplitude; ¢(t)=phase.

dé __.
a. —; =Instantaneous frequency.

b. Can’t define these from Re|z(t)] only. Leads to:

. Analytic signal of x(t) is z,(t) = z(t) — jH{z(t)}.

a. Hilbert zform H{z(t)} = x(t) x =1

Transfer function: jSGN|w] < & phase shift.

[ 2X(w), ifw > 0;

b Xa(w) = {0, if w < 0.

c. EX: z(t) = cos(at) — x,(t) = €?** (quadrature)

d. z(t) causal— Im[X (w)] = H{Re[X (w)]}.



THE CONTINUOUS (MORLET) WAVELET TRANSFORM

Def’n: Continuous or Morlet wavelet xform:

Wele(t)} = [a(t) 2u* (Sh)dt,a > 0

1. Large a >> 0 —long time scale, coarse resolution.
Small 0 < a << 1 —short time scale, fine resolution.
2. Requirements on the mother wavelet ¥(t):
a. U(0) = 0 —bandpass (important requirement).

b. C= [ "I’fjf'de < .
This is satisfied in practice if ¥(0) =0
and if | ™ . ¥(w) = 0 —no impulse in (t).

|w|—

3. Reconstmct z(t) from W¢ {:1:( )} using the formula

Cfo be{CE } ¢(t b)dbda
Proof See V&K p.302-3.

4. Properties:
a. Shift-invariant: Wi{z(t —to)} = Wy, {z(t)}-

b. Scale: W{z(t/c)} = \/]c]WS//CC{:E(t)}.
c. Parseval: [ |z(t)|?dt = & [ [|IWe{z(t)}|> 22,
Proof: See V&K p.306-7.

5. Morlet wavelet: () = %e‘ﬁme_j‘%t; U(w) = e~ (Ww0)*/2,
wo = 5.336 —1st peak of Re[y(t)|=half t = 0 value.
6. Sample: a = 2™,b = n2™ —dyadic wavelet sampling.

This xform is heavily overdetermined and redundant.




Localization Properties of Morlet Wavelet

Let the mother wavelet have duration dt

and bandpass spectrum [wo — %2, wp + %2]:

. a << 1—only "see” z(t) for b— %Lt <t < b+ %L,
a. Narrow interval—can track nonstationarity (vary b).

b. Good time localization; ”see” fine details of x(t).
c. ”Zoom-in” on details of x(t).

L a<<1—"see” X(w) for €0 — 22 <y < €0 4 00

a. High and broad frequency band.
b. Octave-band filtering (constant

width )

center

ca>>1—"see” x(t) for b— XL <t < b+ WL,

a. Broad interval—can’t track nonstationarity.
b. Little time localization; ”see” coarse details of x(t).
c. "Zoom-out” on x(t); see "big picture.”

. a>>1 —only "see” X (w) for %_g_z <w< %ng_z_

a. Low and narrow frequency band.
b. Octave-band filtering.



THE SHORT-TIME FOURIER TRANSFORM (STFT)

Def’n: The STFT is deﬁned as
STFT, {z(t)} = [w(t — 7)z(t)e I dt.

1. Fourier xform of windowed (by w(t — 7)) z(t).
As 7 changes, pick off x(t) at different times.
2. Requirements on the window w(t): None.
Usually normalize [ |w(t)|*dt = 1.
Should be localized in time and frequency to be useful.

3. Reconstruct x(t) from STFT,, {x(t)}:
x(t) = 5= [ [ STFT, {z(t)}w(t — 7)e* dw dr.

4. Properties:
a. STFT time-frequency tilings all same size.
Wavelet: t-f tilings have different sizes.
b. Parseval: [ |z(t)]?dt = 5= [ [|STFT, {x(t)}*dwdr.
Proof: V&K p.313-4.
c. Spectrogram: |STFT,, {z(t)}|* is local psd.

5. Gabor function: w(t) =be=; W(w)="b %e‘“ﬂ/‘la.
Best localization in time and frequency.

6. Sample: w = mwgy, T = nTy
since time-frequency tilings all have same size.
STFT is heavily overdetermined and redundant.



TILINGS OF T-F PLANE: STFT AND MORLET

For both sampled STFT and Morlet wavelet xforms:
Express z(t) using basis functions localized in time and freq.

STEFT:
1. Basis funcs={w(t — n7g)e!™ot n,m € integers}.
2. w(t)=window localized in time and frequency—
w(t — nty)e! ™ot centered at (¢, w) = (n7o, mwp).
3. No scaling of t-f plane tiles.
4. STFT, {x(t)} projects z(t) onto t-f tiles.

Continuous (Morlet) Wavelet Transform
1. Basis funcs={2""/24(27™t — n),n, m € integers}.
2. 1(t)=basis localized in time and frequency—
Y (27"t — n) centered at (t,w) = (2™n,27™wy).
3. Now t-f plane tiles are scaled by 2+™.

4. Wavelet xform projects x(t) onto t-f tiles.

See next page for figures of t-f tilings.



SPECTROGRAM PROPERTIES

DEF: The spectrogram is |STFT,, -{x(t)}|?.
1. Spectrogram = | [ w(t — 7)z(t)e” 7 dt|?
2. = 4| [W(w—w)X(w)el*  dw'|?

using (generalized) Parseval’s theorem
and also F{w(t — 7)} = W(w)e 7.
3. Can view as time-varying local energy spectral density.

Properties

1. Tradeoftf between time and freq resolutions:
a. Narrow window—good time localization,
poor freq resolution (based on too little data).
b. Spectral peaks convolved with W (w) —blurred.
Also, short time support—large bandwidth.

o

d. Wide window—good frequency resolution, poor
time localization (signal varies within window).

e. Can see these explicitly in above formulae:
tradeoff between compactness of w(t) and W(w)
(time-bandwidth product).

2. Simple and actually does work fairly well.
3. Can use signal-dependent window w(t).
4. Does NOT satistfy marginals



THE WIGNER-VILLE T-F DISTRIBUTION

Def’n: Wigner-Ville distribution is defined as
Wo{z(t)} = = [x(r +t/2)x* (1 — t/2)e +dLt.

2w
1. This is 2-D Fourier dual of ambiguity function.
Dates back to 1932; used in quantum mechanics!
3. (T +t/2)x* (7 — t/2) = instantaneous autocorrelation
of z(t) having lag ¢ at time 7.
So this is instantaneous version of S, (w) = F{R.(t)}.
4. Reconstruct x(t) from W, {z(t)}:

r(t)x*(0) = [ [ Wiy rep/o{z(t)} e/ dw dr.

5. Nice Properties:
a. Marginals are preserved: If F{x(t)} = X (w),

J WoA{2(t)dr = | X ()% [ Wer{z(t) }dw = |x(1)[*.
Compare to spectrogram: Total energy conserved:
[ [ISTFT, {z(t)}?*dwdr = [ |z(t)|?dt
but marginals not conserved separately.
b. Time and frequency shift-invariant:
Wor {(t = t0)e90} = Wiy 1, (1)}
c. Sharp resolution: For chirp z(t) = ef(@t)t = gjat”
(this is linearly increasing frequency w = at)
Wy {x(t)} = 0(w — at) (try it!)

6. Bad Properties:
a. Not non-negative: Can have W, {z(t)} < 0!
Very bad for a purported energy spectral density!
b. Cross terms: Since nonlinear, no superposition!
Solution: Use RID (reduced interference distribution)
of Choi-Williams (insert kernel which windows in t-f).

o
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4.
We{z(t)} = 06(w—wi)+6(w—wa)+26(w—1F2) cos(wa —w1 )t

D.

More Properties of Wigner Distribution

cx(t) = A(t)ej¢(t)

W, r{x(t)}d
—average freq at ¢ is GWWW ;{E:;i)i: — %

=instantaneous frequency, as it should!

Product: W, {z1(t)z2(t)} = [ W +{z1(¢)}We—wr +{x2(t) }dw’
Product in time—convolution in freq.

Convol: W, {x1(t)xx2(t)} = [ Wy {x1(t)} W r—r {x2(t) }dr’

Product in freq—convolution in time.

Example of cross terms: z(t) = e/“1t 4 e/¥2t —

Can compute in frequency domain as
Wo{z(t)} = [a(r+t/2)x* (1 — t/2)e I« dt
= [X(w—0/2)X*"(w+6/2)e70d0

using (generalized) Parseval’s theorem on F;_.¢
and also F{z(t — 1)} = X (0)e 777,

11



CHOI-WILLIAMS (RID) T-F DISTRIBUTION

Def’n: The Choi-Williams t-f distribution,
a type of RID (Reduced Interference Distribution):

CW, {z(t)} = ffﬁk(“_T):U(u+t/2)sc*(u—t/2)e‘j”tdudt.

'
where the kernel k(t) = %e—ﬂ/@‘ﬁ)

2mo?

1. Advantages:
a. Kernel k(t) tends to suppress cross terms, at the price
of reducing resolution.
b. Marginals still satisfied for any o.
2. Can trade these off by varying o:
a. 0 — 0: k(t) — 0(t) = Wigner—cross terms.
b. ¢ — oco: k(t) — k —no cross terms, no resolution!
3. Other choices of kernel k(t) can be made.

EXAMPLES: SUPPRESSION OF CROSS TERMS

Example 1: z(t) = e/t 4 79!
(a): Wigner (b): Choi-Williams ¢ = 0.001 (c¢): ¢ = 0.003

Example 2: z(t) = e(a1+ib0)t?/2+jwit 4 o(aa+jba)t®/24jwat

(sum of 2 chirps; instantaneous freqs w = bt +w;, 1 = 1,2)
(a): Wigner (b): Choi-Williams
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COHEN’S CLASS Of TFDS USING KERNELS

IDEA (L. Cohen): Define time-freq dist. (TFD) as
. Define ambiguity function Ag {x(t)} as
ApA{x(t)} = [z(u+7/2)z* (u —7/2)e?"du.

Note 4m2W,, {z(t)} = FF{Aq{z(t)}}
— [ [ Ag{a(t)}e 70347 8 dr.

. Define W, {z(t)} as
W;,t{x( )} = W ffk(@,T)AQ,T{x(t)}e_jgte_ijdH dr

for some kernel k(0,T).
Note this convolves W, . {x(t)} with F~1F~1{k(0,7)}.

Examples:
. k(0,7) =1 —Wigner-Ville (easy).
2. k(0,7) = e 7 /7 —Choi-Williams using
[ ed0u=) =077/ gy — @e—ﬁw—t)?

. Other choices possible (see below).
. To satisfy marginals, need k(0,7) = k(0,0) = 1.
To satisfy energy conservation, need k(0,0) = 1.
. Kernel can be made signal-dependent (Baraniuk-Jones).
. Recover signal from W/, ,{x(t)} using
27s(t =/ ”kz‘e{f_gt)}ewteﬁ“e 39t/2 dyy dw df

For spectrogram, how can we recover signal from |F|?
Is magnitude of STF'T, not F!
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RECONSTRUCTION OF DISPERSIVE LAYERED MEDIA

Ll

= L=

o

(Chien and Yagle, 1989)

Given:

. Dispersive (frequency-dependent absorption)

layered (absorption, density vary with depth) medium.
Reflection response R(t) of medium to an impulse
(deconvolved from actual source explosion signal)

Goal:
To reconstruct density p; and absorption @);
in i* layer of acoustic medium for all s.

Assumptions:
]

Absorption factor=e™ 2¢?i °

z=distance in ‘" layer, c=wave speed.

. . . Ci —Pit1Ci
Reflection coefficient r; = £5i_Pit1Citl

pPiCitpiti1Cit1’
Neglect multiple reflections.

Layers equally thick (use very thin layers).

Approach:

Compute time-freq distribution of R(t).

Window tfd in time to separate layer reflections.
Intervals between layer reflections— c¢;.

Fit exponential curve to freq variation at each time.
”Time constant”=2) . Q;c; (actually fit line to log).
Amplitude of tfd (intercept)— r; — p;.
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TRACKING NON-CONSTANT BLOOD FLOW IN MRI
(Sahiner and Yagle, 1989)

Given:
1. Moving object (e.g., blood) undergoing MRI.
Motion blurs MRI signal; must deconvolve it.
2. MRI signal of moving object.
Both motion and object are unknown.

Goal:
To reconstruct both the unknown velocity
and the unknown (nuclear) spin density

Assumptions:
1. Everything occurs in one direction (projection).
2. Velocity affine function of location
a. Reasonable for thin MRI slice excitation
of steady-state flow in blood vessel.
b. Use different functions in each slice—
trapezoidal approx. to velocity vs. location.

3. p(=(e"" — 1)) ~constant.

Approach:
1. Compute time-freq distribution of MRI signal

21k 29 (e¥1t —vit—1)
rty=¢ 1 (A (et~ 1)
velocity v(z) = vg + v1z, p(k) = F{spin density(zx)}.
2. Instant freq=42 = kv (gn1t _ 1)

dt U1
3. Trajectory of tfd maxima— vg, v1.
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