PRINT YOUR NAME HERE:

HONOR CODE PLEDGE: "I have neither given nor received aid on this exam, nor have I concealed any violations of the honor code." Open book; SHOW ALL OF YOUR WORK!

SIGN YOUR NAME HERE:

- (25) 1. We observe $r(t) = \begin{cases} A\sin(3\pi t) + B\sin(5\pi t) + n(t) & \text{under } H_1 \\ C\sin(3\pi t) + n(t) & \text{under } H_0 \end{cases}$ on interval $0 \le t \le 2$. n(t) is 0-mean WGN with $S_n(\omega) = 1$. A, B, C are constants (see below).
 - (5) a. Choose 2 orthonormal basis functions and draw a signal space diagram.
 - (5) b. Write down the optimal detector for deciding H_0 vs. H_1 from $\{R(t), 0 \le t \le 2\}$.
 - (5) c. If A = B = 3 and C = 1, compute d^2 for this detector.
 - (5) d. If A = B = 3, what value of C gives the *worst* performance, in terms of d^2 ?
 - (5) e. Prove that increasing |B| increases d^2 , and that this is not true for |A|.

WRITE ANSWERS HERE:

(a): $\phi_1(t) =$

 $\phi_2(t) =$

(b):

- (c): $d^2 =$
- (d): C =
- (e):

(35) 2. We observe $r(t) = \begin{cases} At^2 + w(t) & \text{under } H_1 \\ w(t) & \text{under } H_0 \end{cases}$ over interval $-1 \le t \le 1$ w(t) is 0-mean Gaussian with $S_w(\omega) = 10^6 / [(\omega^2 + 4000)(\omega^2 + 9000)].$

- (5) a. Write down the Karhunen-Loeve expansion of w(t) over $-1 \le t \le 1$. Give *explicit* expressions for $\phi_n(t)$ and λ_n .
- (5) b. Given an arbitrary function f(t), write down an expression for $\int Q(t,s)f(s)ds$.
- (10) c. Write down the optimal detector for deciding H_0 vs. H_1 from $\{R(t), -1 \le t \le 1\}$. Let A = 3 and simplify your answer as much as possible.
- (5) d. Let A = 3 and compute d^2 for this detector.

(10) e. Now we know H_1 is true, but A is now an unknown constant. Compute $\hat{A}_{MLE}(\{R(t), -1 \le t \le 1\})$. Simplify as much as possible.

WRITE ANSWERS HERE:

(a): $\phi_n(t) =$

$$\lambda_n =$$

(b): $\int Q(t,s)f(s)ds =$

(c):

- (d): $d^2 =$
- (e): $\hat{A}_{MLE} =$

#1:

#2:

#3:

 \sum :

- (40) 3. We observe $r(t) = \begin{cases} A\sqrt{2}\sin(m\pi t) + w(t) & \text{under } H_1 \\ w(t) & \text{under } H_0 \end{cases}$ over interval $0 \le t \le 1$. w(t) is a Wiener process obtained from integrating n(t) from Problem #1. For parts (a)-(c): A = 3 and m = 5.5.
 - (5) a. Write down the Karhunen-Loeve expansion of w(t) over $0 \le t \le 1$. Give *explicit* expressions for $\phi_n(t)$ and λ_n .
 - (10) b. Write down the optimal detector for deciding H_0 vs. H_1 from $\{R(t), 0 \le t \le 1\}$.
 - (5) c. Compute d^2 for this detector.
 - (10) d. Now we know H_1 is true, but A is now an unknown constant. m = 5.5 still. Compute $\hat{A}_{MLE}(\{R(t), 0 \le t \le 1\})$. Simplify as much as possible.
 - (10) e. Now we observe $r(t) = \begin{cases} \cos(m\pi t) + n(t) & \text{under } H_1 \\ n(t) & \text{under } H_0 \end{cases}$ over interval $0 \le t \le 1$. n(t) is from Problem #1. Note $d^2 = 1/2$ for all half-integer m. **An idea strikes us:** Let $r'(t) = \int_0^t r(s)ds$ and note $w(t) = \int_0^t n(s)ds$. Thus we can "integrate" this problem to get the previous problem.
 - (5) i. Show that by varying m we can make d^2 in the first problem arbitrarily large.
 - (5) ii. This suggests we can do the same thing in the second problem. Yet we know $d^2 = 1/2$ for all m! Resolve this apparent contradiction.

WRITE ANSWERS HERE:

(a): $\phi_n(t) =$

 $\lambda_n =$

(b):

(c): $d^2 =$

(d): $\hat{A}_{MLE} =$

(e):