PRINT YOUR NAME HERE:

HONOR CODE PLEDGE: "I have neither given nor received aid on this exam, nor have I concealed any violations of the honor code." Open book; SHOW ALL OF YOUR WORK!

SIGN YOUR NAME HERE:

(25) 1. We observe $r(t)=\left\{\begin{array}{ll}A \sin (3 \pi t)+B \sin (5 \pi t)+n(t) & \text { under } H_{1} \\ C \sin (3 \pi t)+n(t) & \text { under } H_{0}\end{array}\right.$ on interval $0 \leq t \leq 2$. $n(t)$ is 0 -mean WGN with $S_{n}(\omega)=1$. A, B, C are constants (see below).
(5) a. Choose 2 orthonormal basis functions and draw a signal space diagram.
(5) b. Write down the optimal detector for deciding H_{0} vs. H_{1} from $\{R(t), 0 \leq t \leq 2\}$.
(5) c. If $A=B=3$ and $C=1$, compute d^{2} for this detector.
(5) d. If $A=B=3$, what value of C gives the worst performance, in terms of d^{2} ?
(5) e. Prove that increasing $|B|$ increases d^{2}, and that this is not true for $|A|$.

WRITE ANSWERS HERE:
(a): $\phi_{1}(t)=$
$\phi_{2}(t)=$
(b):
(c): $d^{2}=$
(d): $C=$
(e):
(35) 2. We observe $r(t)=\left\{\begin{array}{ll}A t^{2}+w(t) & \text { under } H_{1} \\ w(t) & \text { under } H_{0}\end{array}\right.$ over interval $-1 \leq t \leq 1$ $w(t)$ is 0-mean Gaussian with $S_{w}(\omega)=10^{6} /\left[\left(\omega^{2}+4000\right)\left(\omega^{2}+9000\right)\right]$.
(5) a. Write down the Karhunen-Loeve expansion of $w(t)$ over $-1 \leq t \leq 1$.

Give explicit expressions for $\phi_{n}(t)$ and λ_{n}.
(5) b. Given an arbitrary function $f(t)$, write down an expression for $\int Q(t, s) f(s) d s$.
(10) c. Write down the optimal detector for deciding H_{0} vs. H_{1} from $\{R(t),-1 \leq t \leq 1\}$.

Let $A=3$ and simplify your answer as much as possible.
(5) d. Let $A=3$ and compute d^{2} for this detector.
(10) e. Now we know H_{1} is true, but A is now an unknown constant.

Compute $\hat{A}_{M L E}(\{R(t),-1 \leq t \leq 1\})$. Simplify as much as possible.
WRITE ANSWERS HERE:
(a): $\phi_{n}(t)=$
$\lambda_{n}=$
(b): $\int Q(t, s) f(s) d s=$
(c):
(d): $d^{2}=$
(e): $\hat{A}_{M L E}=$
(40) 3. We observe $r(t)=\left\{\begin{array}{ll}A \sqrt{2} \sin (m \pi t)+w(t) & \text { under } H_{1} \\ w(t) & \text { under } H_{0}\end{array}\right.$ over interval $0 \leq t \leq 1$. $w(t)$ is a Wiener process obtained from integrating $n(t)$ from Problem \#1. For parts (a)-(c): $A=3$ and $m=5.5$.
(5) a. Write down the Karhunen-Loeve expansion of $w(t)$ over $0 \leq t \leq 1$.

Give explicit expressions for $\phi_{n}(t)$ and λ_{n}.
(10) b. Write down the optimal detector for deciding H_{0} vs. H_{1} from $\{R(t), 0 \leq t \leq 1\}$.
(5) c. Compute d^{2} for this detector.
(10) d. Now we know H_{1} is true, but A is now an unknown constant. $m=5.5$ still. Compute $\hat{A}_{M L E}(\{R(t), 0 \leq t \leq 1\})$. Simplify as much as possible.
(10) e. Now we observe $r(t)=\left\{\begin{array}{ll}\cos (m \pi t)+n(t) & \text { under } H_{1} \\ n(t) & \text { under } H_{0}\end{array}\right.$ over interval $0 \leq t \leq 1$. $n(t)$ is from Problem \#1. Note $d^{2}=1 / 2$ for all half-integer m.
An idea strikes us: Let $r^{\prime}(t)=\int_{0}^{t} r(s) d s$ and note $w(t)=\int_{0}^{t} n(s) d s$. Thus we can "integrate" this problem to get the previous problem.
(5) i. Show that by varying m we can make d^{2} in the first problem arbitrarily large.
(5) ii. This suggests we can do the same thing in the second problem.

Yet we know $d^{2}=1 / 2$ for all m ! Resolve this apparent contradiction.
WRITE ANSWERS HERE:
(a): $\phi_{n}(t)=$
$\lambda_{n}=$
(b):
(c): $d^{2}=$
(d): $\hat{A}_{M L E}=$
(e):

