
EECS 564 ESTIMATORS Winter 1999

GOAL: Estimate a from observation R of random variable r.
NEED: Conditional pdf pr|a(R|A) and a priori pdf pa(A) for a.

If we knew a, we would know pdf for random variable r.
WANT: min E[c(e)] where random variable e = a− â(r)=error.
COST: Different c(·) →different estimators:

MEP: c(e) =
{

0 if |e| < ε;
1 if |e| > ε.

compare to detection criterion
”a miss is as good as amile”

E[c(e)] = 1−∫∞
−∞

∫ â(R)+ε

â(R)−ε
pr,a(R, A)dAdR = 1−2ε

∫∞
−∞ pr,a(R, â(R))dR

minimized when pr,a(R, â(R)) maximized for each R.

MAP: âMAP (R) = ARGMAX
A [pr|a(R|A)pa(A)] (pr,a = pr|apa).

Often use: ∂
∂A [log pr|a(R|A) + log pa(A)] = 0.

As in detection, MEP criterion→MAP solution.

LSE: c(e) = e2; Least-Squares Estimation criterion.

LSE: âLS(R) = E[a|r = R] =
∫

Apr|a(R|A)pa(A)dA∫
pr|a(R|A′)pa(A′)dA′

denominator
is just pr(R)

PROOF: Stark and Woods, page 298.
↔the moment of inertia of a body is minimized around
its center of mass (parallel-axis theorem of mechanics).

What if we don’t have a priori pa(A)? (non-Bayesian)
Use Maximum-Likelihood Estimator (MLE):

MLE: âMLE(R) = ARGMAX
A [pr|a(R|A)].

Often use: ∂
∂A [log pr|a(R|A)] = 0.

Maximizes likelihood of what actually happened (r=R).

BIAS: Let a be a parameter: pa(A) = δ(A−Aact).
â(R) is unbiased if E[â(r)] = Aact ↔ E[e] = 0.

E[â(r)] =
∫ ∫

â(R)pr|a(R|A)δ(A−Aact)dR dA =
∫

â(R)pr|a(R|Aact)dR
MSE: â(R) unbiased→ E[(â(r)−Aact)2] = σ2

â(r): MSE=variance.



EXAMPLE: Flip a coin with Pr[heads] = a 100 times.
OBSERVE: r=#heads in 100 independent flips of the coin.
ESTIMATE: a = Pr[heads] from observation R of RV r.
MODEL: pmf pr|a(R|A) =

(
100
R

)
AR(1−A)100−R,

R = 0, 1, . . . 100, 0 ≤ A ≤ 1.

MLE: ∂
∂A [log

(
100
R

)
+ R log A + (100−R) log(1−A)]

= R
A − 100−R

1−A = 0 → âMLE(R) = R
100 .

BIAS: E[âMLE(r)] = E[ r
100 ] = 100Aact

100 = Aact unbiased.
MSE: E[(âMLE(r)−Aact)2] = σ2

r
100

= 100Aact(1−Aact)
1002 .

MEP: a priori distribution: pa(A) = 1 for 0 ≤ A ≤ 1.
MAP: Clearly âMAP (R) = âMLE(R) = R

100 .
Uniform a priori distribution of a → âMAP (R) = âMLE(R).
Uniform pdf: a ∼ N(0, σ2) with σ2 →∞.

MEP: a priori distribution: pa(A) = 2A for 0 ≤ A ≤ 1.
MAP: ∂

∂A [log
(

100
R

)
+R log A+(100−R) log(1−A)+log 2+log A]

= R
A − 100−R

1−A + 1
A = 0 → âMAP (R) = R+1

101 .
Nonuniform a priori pdf has slanted MAP estimator!

LSE: a priori distribution: pa(A) = 1 for 0 ≤ A ≤ 1.

LSE: âLS(R) = E[a|r = R] =
∫ 1

0
A( 100

R )AR(1−A)100−RdA∫ 1

0
( 100

R )AR(1−A)100−RdA
= R+1

102 .

(Schaum’s Outline Math. Handbook, (15.24) on p. 95)
Note even with a uniform a priori distribution for a,
least-squares estimator still slanted! (âLS(50) = 51

102 = 1
2 )

r, a jointly Gaussian→
[

r
a

]
∼ N

([
E[r]
E[a]

]
,

[
σ2

r λra

λra σ2
a

])

→ âLS(R) = âLLSE(R) = E[a] + λar

σ2
r

(R− E[r]) (Linear LSE).


