EECS 564 ESTIMATORS Winter 1999

GOAL:
NEED:

WANT:
COST:

Estimate a from observation R of random variable r.
Conditional pdf p,|,(R|A) and a priori pdf p,(A) for a.
If we knew a, we would know pdf for random variable 7.
min F|c(e)] where random variable e = a — a(r)=error.
Different ¢(-) —different estimators:

 c(e) = {O if [e] < e;  compare to detection criterion

1 if le] > e. ”amissis as good as amile”

=1 [ pra(R, A)dAR = 1-2¢ [*_p,.o(R,a(R))dR

minimized when p, ,(R, a(R)) maximized for each R.

: dMAP(R) — ARGIQWAX[ r|a(R’A)pa(A>] (p?”,a — pr|apa)-

Often use: -2 [log p,a(R|A) + log pa(A)] = 0.
As in detection, MEP criterion—MAP solution.

LSE:
LSE:

c(e) = e?; Least-Squares Estimation criterion.
. B 1 [ Apra(RIA)pa(A)dA  denominator
ars(R) = Elajr = R = [ Pria(RIA)Pa(A)dA”  isjust py(R)

PROOF: Stark and Woods, page 298.
—the moment of inertia of a body is minimized around
its center of mass (parallel-axis theorem of mechanics).

MLE:

What if we don’t have a priori p,(A)? (non-Bayesian)
Use Maximum-Likelihood Estimator (MLE):

anre(R) = Y D (RIA)).

Often use: -2 [log p,.(R|A)] = 0.

Maximizes likelihood of what actually happened (r=R).

: a(R) unbiased— E[(a(

. Let a be a parameter: p,(A) = 0(A — Ager).

a(R) is unbz’ased if Ela ( )| = Aget < Ele] = 0.
_ff pr|a R’A) ("L; ﬁaCt)deA f (R)pr|a(R’Aact> R

)?] = 0&(7,) MSE=variance.



EXAMPLE: Flip a coin with Prlheads| = a 100 times.
OBSERVE: r=+#heads in 100 independent flips of the coin.
ESTIMATE: a = Pr|heads] from observation R of RV r.
MODEL: pmf p,o(R|A) = (') AR(1 — A)100-F,
R=0,1,...100, 0<A<I.

MLE:

g (") + Rlog A + (100 — R)log(1 — A)]

7 [lo
R 100—R R
A

A
= — 1_A :OH&MLE(R):W.

BIAS:
MSE:

Elayre(r)] = Elis] = 10(1)610“’5 = A, unbiased.

I 100Aact 1 Aact
El(ayre(r) — act) | = = 10(02 )

MEP:
MAP:

a priori distribution: pa(A) =1for0< A<,
Clearly ayap(R) = amre(R) = 1.
Uniform a prioridistribution of a — aprap(R) = anpe(R).

Uniform pdf: a ~ N(0,0?) with 02 — oo.

MEP:
MAP:

a priori distribution: p,(A) =2A for 0 < A < 1.

2 (log (100) + Rlog A+ (100— R) log(1— A)+log 2+log A]

_E_lOOR .  R+1
= A A+A_O_>CLMAP(R)_101'

Nonumform a priori pdf has slanted MAP estimator!

LSE:
LSE:

a priori distribution: p,(A) =1for 0 < A < 1.

X fl A(lgO)AR(l—A)loo_RdA Rl
0

(Schaum’s Outline Math. Handbook, (15.24) on p. 95)

Note even with a uniform a prior: distribution for a,

least-squares estimator still slanted! (ars(50) = 25 = 3)

— dLS(R) = &LLSE(R) = E[CL] +

.. . (s E[T] U? Ara
r,a jointly Gaussian— [a] ~ N ([E[a]] ; [)\m o2 ])

a

Aar (R — E[r]) (Linear LSE).




