
2-D blind deconvolution for compactly-supported images by �nding

a null vector of a Toeplitz-block-Toeplitz linear system of equations

Andrew E. Yagle

Dept. of EECS, The University of Michigan, Ann Arbor, MI 48109-2122

aey@eecs.umich.edu

April 9, 2021

Abstract

The 2-D blind deconvolution problem is to recon-
struct an unknown image and an unknown point-
spread function (PSF) from their known 2-D convolu-
tion. The unknown image and PSF both have com-
pact support (known �nite spatial extents). Their
known 2-D convolution is represented as a Toeplitz-
block-Toeplitz (TBT) matrix, which is the product
of two unknown TBT matrices whose elements are
the unknown pixel values of the image and PSF. The
image is reconstructed directly in the null vector of
the TBT matrix of the known 2-D convolution. No
additional processing, such as deconvolution of the
now-known PSF, is needed. The scale factor ambi-
guity of the reconstructed image is manifested in the
unknown scale factor of the null vector. The only
requirements are: (1) the support of the unknown
image is non-square; and (2) the TBT matrices of
the unknown PSF and image have full ranks.

1 INTRODUCTION

1.1 Blind Deconvolution

The problem of reconstructing an image with known
compact support from its 2-D convolution with an
unknown blurring or point-spread function (PSF)
arises in several disciplines, including image restora-
tion from an unknown blurring agent, remote sensing
through the atmosphere, and medical imaging.

Since both the image and point-spread function
(PSF) can be assumed to have �nite spatial extent
(i.e., �nite support), their Fourier transforms may be
sampled in wavenumber. Most images are approxi-
mately bandlimited to the extent that they may also
be sampled spatially as well. This leads to the dis-
crete version of this problem, in which a discrete im-
age with �nite extent is to be reconstructed from its
2-D discrete convolution with an unknown discrete
PSF with �nite spatial extent. This precludes meth-
ods based on oversampling of continuous images.

1.2 Previous Work

A common approach for blind deconvolution prob-
lems is to use an iterative transform algorithm [1],
which alternate between the spatial and wavenumber
domains. However, these algorithms often stagnate,
failing to converge to a solution. Other approaches
require the computationally expensive and extremely
unstable numerical operation of tracking zero sheets
of algebraic functions, or statistical estimation algo-
rithms that also may not converge. We will not at-
tempt to review or even list all approaches here.

The problem addressed in this paper should be dis-
tinguished from the problem of multichannel blind
deconvolution, addressed in many papers. In the lat-
ter problem, a single unknown signal or image is �l-
tered with several unknown blurring functions, re-
sulting in several known outputs. This is much sim-
pler than single-blur blind deconvolution.

1



1.3 Problem Statement

The 2-D discrete blind deconvolution problem is as
follows. We observe yi1;i2 where

yi1;i2 = hi1;i2 � �xi1;i2 (1)

where �� denotes 2-D convolution in i1 and i2. 1-D
and 2-D convolution are de�ned in the next section.
We make the following support assumptions:

1. Image xi1;i2 = 0 unless 0�i1�M1�1
0�i2�M2�1

;M1 > M2;

2. PSF hi1;i2 = 0 unless 0 � i1; i2 � L� 1;

3. Data yi1;i2 = 0 unless 0�i1�L+M1�2
0�i2�L+M2�2

;

4. M1 > M2: the image is "tall." If M1 < M2, the
problem can be rotated by 90o.

5. All variables are real functions.

The goal is to reconstruct the image xi1;i2 from
knowledge of only the data yi1;i2 ; hence the term
\blind deconvolution." No stochastic assumptions
are made about either the image or the point-spread
function. This precludes use of methods based on cu-
mulants, ARMA or Poisson image models or stochas-
tic equalization. Neither the image nor the PSF need
be nonzero for all i1; i2 in the above ranges; the sup-
port constraints prevent translational ambiguity.

1.4 Problem Ambiguities

The ambiguities in 2-D blind deconvolution are:

1. Scale factor: If fhi1;i2 ; xi1;i2g is a solution, then
for any real constant c, fchi1;i2 ;

1

c
xi1;i2g is also

a solution. If c cannot be determined from the
known image energy, it usually is irrelevant. The
problem is considered solved when the image is
determined to a scale factor c, as done here;

2. Translation: If fhi1;i2 ; xi1;i2g is a solution, then
fhi1+d1;i2+d2 ; xi1�d1;i2�d2g is also a solution for
any constants (d1; d2). This ambiguity is elimi-
nated by specifying supports of hi1;i2 and xi1;i2 ;

3. Exchange: We need to be able to distinguish
hi1;i2 from xi1;i2 . This ambiguity is eliminated
since xi1;i2 has non-square (M1 �M2) support,
while hi1;i2 has square (L� L) support.

2 1-D and 2-D Convolutions

2.1 1-D Convolution

2.1.1 De�nition of 1-D Convolution

The 1-D convolution of a sequence hn of length L

with a sequence xn of length M results in a sequence
yn of length L+M � 1, where (assuming L �M)

yn =

L�1X
i=0

hixn�i; 0 � n � L+M � 2: (2)

For example,

f1; 2; 3g � f4; 5; 6g = f4; 13; 28; 27; 18g: (3)

2.1.2 Toeplitz Matrix times Vector Forms

This can be written in matrix form as the "tall" form2
6664
1 0 0
2 1 0
3 2 1
0 3 2
0 0 3

3
7775
2
4 4
5
6

3
5 =

2
6664

4
13
28
27
18

3
7775 (4)

or as the "reclining" form

[4; 13; 28; 27; 18] = [4; 5; 6]

2
4 1 2 3 0 0
0 1 2 3 0
0 0 1 2 3

3
5 : (5)

The "reclining" is the transpose of the "tall" form.

2.1.3 Product of Toeplitz Matrices Forms

The "tall" form can be extended to the product of
Toeplitz matrices

2
66666664

1 0 0 0 0
2 1 0 0 0
3 2 1 0 0
0 3 2 1 0
0 0 3 2 1
0 0 0 3 2
0 0 0 0 3

3
77777775

2
6664
4 0 0
5 4 0
6 5 4
0 6 5
0 0 6

3
7775 =

2
66666664

4 0 0
13 4 0
28 13 4
27 28 13
18 27 28
0 18 27
0 0 18

3
77777775
:

(6)
The "reclining" form can be extended similarly to the
transpose of the "tall" form.

2



2.1.4 z-transforms

The z-transform X(z) of xn is de�ned as

X(z) =
M�1X
n=0

xnz
�n: (7)

The 1-D convolution (2) becomes the product

Y (z) = H(z)X(z): (8)

2.2 2-D Convolution

2.2.1 De�nition of 2-D Convolution

The 2-D convolution yi1;i2=hi1;i2 � �xi1;i2 of (L� L)
PSF fhi1;i2 ; 0 � i1; i2 � L � 1g with (M1 � M2)
image fxi1;i2 ; 0 � i1 � M1 � 1; 0 � i2 � M2 � 1g is

((L+M1�1)� (L+M2�1)) fyi1;i2 ;
0�i1�L+M1�2
0�i2�L+M2�2

g,

where (assuming L �M1;M2)

yi1;i2 =

L�1X
n1=0

L�1X
n2=0

hn1;n2xi1�n1;i2�n2 : (9)

A 2-D convolution can be viewed as nested 1-D con-
volutions. For example,

�
1 2
3 4

�
� �

�
5 6
7 8

�
=

2
4 5 16 12
22 60 40
21 52 32

3
5 : (10)

2.2.2 2-D z-transforms

De�ning the 2-D z-transform

X(z1; z2) =

M1�1X
i1=0

M2�1X
i2=0

xi1;i2z
�i1
1 z�i22 ; (11)

the 2-D convolution (9) becomes

Y (z1; z2) = H(z1; z2)X(z1; z2): (12)

Setting z1 = zL+M2�2
2 maps the 2-D convolution (9)

to a 1-D convolution. For (10),

[1; 2; 0; 3; 4] � [5; 6; 0; 7; 8] = (13)

[5; 16; 12; 22; 60; 40; 21; 52; 32]:

This explains the Toeplitz-block-Toeplitz form below.
For completeness, there is a fourth ambiguity of

2-D blind deconvolution. We must assume

H(z1; z2) =
L�1X
i1=0

L�1X
i2=0

hi1;i2z
�i1
1

z�i2
2

X(z1; z2) =

M1�1X
i1=0

M2�1X
i2=0

xi1;i2z
�i1
1 z�i22 (14)

are irreducible (i.e., they cannot be factored). This
is almost surely true in practice. To see this, (9) is

(L+M1�1)(L+M2�1) simultaneous quadratic equations

inL2+M1M2 < (L+M1�1)(L+M2�1) unknowns:

Since the problem is overdetermined, by Bezout's the-
orem there is almost surely at most one solution. In
fact, there are generically no solutions; only from (9)
do we know that even one solution exists.

2.2.3 TBT Matrix times Vector Forms

(10) can be written in matrix form as the "tall" form

2
6666666666666664

1 0 0 0
2 1 0 0
0 2 0 0
� � � � �
3 0 1 0
4 3 2 1
0 4 0 2
� � � � �
0 0 3 0
0 0 4 3
0 0 0 4

3
7777777777777775

2
64
5
6
7
8

3
75 =

2
666666666664

5
16
12
22
60
40
21
52
32

3
777777777775

(15)

or as "reclining" form (transpose of the "tall" form)

[5; 16; 12; 22; 60; 40; 21; 52; 32] = (16)

[5; 6; 7; 8]

2
6664
1 2 0 3 4 0 0 0 0
0 1 2 0 3 4 0 0 0
� � � � � � � � � � �
0 0 0 1 2 0 3 4 0
0 0 0 0 1 2 0 3 4

3
7775 :

3



In this paper, it will be useful to use the "reclining"
form for individual blocks and "tall" form for the
arrangement of the blocks. For example,2

64
5 16 12 0 0 0
22 60 40 5 16 12
21 52 32 22 60 40
0 0 0 21 52 32

3
75 = (17)

2
64
5 6 0 0 0 0
7 8 5 6 0 0
0 0 7 8 5 6
0 0 0 0 7 8

3
75

2
666664

1 2 0 0 0 0
0 1 2 0 0 0
3 4 0 1 2 0
0 3 4 0 1 2
0 0 0 3 4 0
0 0 0 0 3 4

3
777775 :

3 TBT Matrix Formulation for

2-D Blind Deconvolution

3.1 Introduction

We can write the 2-D blind deconvolution problem as

Y = XH (18)

where Y, X and H are TBT matrices. We de�ne

G = H�1: (19)

H is a square matrix by construction (see below) and
we assume H is invertible and X has full rank.
Next, we combine (18) and (19) into

[Y �~I ]

�
Gn

Xn

�
=

�
0

0

�
: (20)

Gn and Xn are (M2+1)th columns of G and X and

~I =

2
4 0 0 0 0 IM2

0 0 IM2
0 0

IM2
0 0 0 0

3
5
T

(21)

picks o� the nonzero values of Xn.

3.2 Consistency of Block Sizes

The sizes of each block, in reclining form:

(k2 + 1)f Y|{z}
L+k1

= (k2 + 1)f X|{z}
M2+k2

(k1 + 1)f H|{z}
L+k1

(22)

for k1 and k2 so that #columns of X=#rows of H:

k1 + 1 =M2 + k2: (23)

Note Y is (k2 + 1)� (k2 +M2 + L� 1) as expected.
The sizes of the blocks, in tall form, for k3 and k4:

(M1+k4)f Y|{z}
k3+1

= (M1+k4)f X|{z}
k4+1

(L+k3)f H|{z}
k3+1

(24)

so #block columns of X=#block rows of H:

k4 + 1 = L+ k3: (25)

Note Y is (k3 +M1 +L� 1)� (k3 + 1) as expected.
We also need H to be square, so that G = H�1 is

de�ned. This requires

(L+ k3)(k1 + 1) = (L+ k1)(k3 + 1) (26)

which simpli�es to

k3 = k1: (27)

We need Y to be tall, with vertical size exceeding
horizontal size by (M1M2) so [X �~I] is square:

(M1+k4)(k2+1) = (L+k1)(k3+1)+(M1M2): (28)

Substituting (23), (25), and (27) into (28) gives

(M1+L�1+k1)(2+k1�M2) = (L+k1)(k1+1)+(M1M2):
(29)

Solving (29) for k1 gives

k1 =
(2M1 + L� 1)(M2 � 1) + 1

M1 �M2

(30)

and k2; k3; k4 from (23), (25), and (27). The denom-
inator of (30) shows why we require M1 > M2.

4



4 Revised Procedure

We can reduce the size of the matrix [Y � I] by
M1M2 as follows. Instead of augmenting [Y] by [�~I]
to account for the unknown image pixels in Xn, we
may delete the rows of [Y] corresponding to those
values, and then reconstruct Xn by multiplying the
deleted rows of [Y] andGn. This loses the advantage
of reconstructingXn directly, but requires solution of
a smaller system of equations [~Y]Gn = 0 where [~Y] is
[Y] with the rows corresponding to nonzero elements
of Xn deleted.
A much greater improvement in required computa-

tion is possible by allowing the PSF to be nonsquare.
Such a PSF can arise from a combination of motion
blur and a square PSF. This also allows the image to
be square. The same program can be used, with the
roles of the image and the PSF exhanged.

5 Matlab Programs

Appendix A is an illustrative Matlab program that
generates Y, X, and H in (18) and checks Y=XH.
Appendix B is an illustrative Matlab program that

�nds the null vector of [Y �~I] in (20) and scales the
null vector to match the original image.
In order to use a conjugate gradient type algo-

rithm, instead of the SVD, a fast way of computing
the TBT matrix [Y �~I]�vector product is needed.
This has the advantage that the TBT matrix need
not be constructed and stored.
Appendix D computes this product using zero-

padding and the 2-D FFT to compute a 2-D convolu-
ton. We were unable to get a conjugate-gradient-type
algorithm working, perhaps due to the conditioning
of the TBT matrix [Y �~I], but the reader may suc-
ceed with a preconditioner.
If the "reclining form" Toeplitz matrix is postmul-

tiplied by a column vector, the result is a "valid"
convolution of length (M �L+ 1). The valid convo-
lution is the usual (linear) convolution with the �rst
and last (L� 1) elements deleted.
Appendices C and E implement two examples.

6 Tiny Example of Matrices

For a (3� 2) image and (2� 2) PSF the sizes of the
matrices: Y: (96� 90); X: (96� 90); H: (90� 90).
Examination of the matrixX in the example below

shows that the (M2 + 1)th column of X has zeros to
its left and right, and the values of xi;j contained in
it are bounded by zeros above and below. So this
column with zero constraints uniquely speci�es xi;j .

=

7 Tiny Example

We applied the method to blind deconvolution of a
5� 3 letter 'E' blurred by a 3� 3 PSF consisting of
the digits of �, resulting in a 7 � 5 blurred image.
The matrix [Y �~I] was (240�239) despite the tiny
size of this problem.
The blurred and reconstructed images are shown.

The reconstruction has maximum error of .0002%.
The Matlab program is given in Appendix B.

BLURRED RECONSTRUCTED

5



8 Larger Example

We applied the method to blind deconvolution of a
(34�8) thumbnail image of the top of the Ei�el tower
in Paris blurred by a (3 � 3) PSF consisting of the
digits of �, resulting in a (36�10) blurred image. The
matrix [Y �~I] was (715� 712). The reconstruction
has maximum error of .0001%.

ORIGINAL BLURRED RECONSTRUCTED

9 Still Larger Example

We apply the revised procedure to blind deconvolu-
tion of an unknown (50� 50) image and an unknown
(30�3) PSF of random values. While the problem is
much larger than the previous examples, the matrix
~Y is only (614� 590), much smaller.

BLURRED IMAGe

5 10 15 20 25 30 35 40 45 50

10

20

30

40

50

60

70

ORIGINAL IMAGE RECONSTRUCTED IMAGE

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

10 Appendix A

%Demo of YY=XX*HH.

clear;%Need M1>M2 (tall X) and H square.

X=[1 2 3;4 5 6]';H=[1 2;3 4];

Y=conv2(X,H);[M1,M2]=size(X);L=size(H,1);[N1,N2]=size(Y);

K1=ceil(((M1+M1+L-1)*(M2-1)+1)/(M1-M2));

K2=K1+1-M2;K4=L-1+K1;

YY1size=(M1+K4)*(K2+1);YY2size=(L+K1)*(K1+1);

for I=1:N1;TTY(:,:,I)=toeplitz([Y(I,1);zeros(K2,1)],...

[Y(I,:) zeros(1,K2)]);end;

for I=1:M1;TTX(:,:,I)=toeplitz([X(I,1);zeros(K2,1)],...

[X(I,:) zeros(1,K2)]);end;

for I=1:L;TTH(:,:,I)=toeplitz([H(I,1);zeros(K1,1)],...

[H(I,:) zeros(1,K1)]);end;

for J=0:N1-1;for I=0:M1+K4-N1;

IY1=(K2+1)*I+1+J*(K2+1):(K2+1)*(I+1)+J*(K2+1);

IY2=(N2+K2)*I+1:(N2+K2)*(I+1);YY(IY1,IY2)=TTY(:,:,J+1);

end;end;for J=0:M1-1;for I=0:M1+K4-M1;

IX1=(K2+1)*I+1+J*(K2+1):(K2+1)*(I+1)+J*(K2+1);

IX2=(M2+K2)*I+1:(M2+K2)*(I+1);XX(IX1,IX2)=TTX(:,:,J+1);

end;end;for J=0:L-1;for I=0:L+K1-L;

IH1=(K1+1)*I+1+J*(K1+1):(K1+1)*(I+1)+J*(K1+1);

IH2=(L+K1)*I+1:(L+K1)*(I+1);HH(IH1,IH2)=TTH(:,:,J+1);

end;end;max(max(YY-XX*HH))

11 Appendix B

%2-D Blind deconvolution by finding the null vector

%of a Toeplitz-Block-Toeplitz matrix

%Need M1>M2 (tall X) and H square.

%Assume upper left corner of image is unity

clear;%to fix scale factor. A tiny example:

X(1,1:3)=1;X(3,1:3)=1;X(5,1:3)=1;X(1:5,1)=1;%"E"

H=[3 1 4;1 5 9;2 6 5];%[YY Z] is 240X239.

Y=conv2(X,H);[M1,M2]=size(X);L=size(H,1);[N1,N2]=size(Y);

K1=ceil(((M1+M1+L-1)*(M2-1)+1)/(M1-M2));%round up.

K2=K1+1-M2;K4=L-1+K1;

YY1size=(M1+K4)*(K2+1);YY2size=(L+K1)*(K1+1);

for I=1:N1;TT(:,:,I)=toeplitz([Y(I,1);zeros(K2,1)],...

[Y(I,:) zeros(1,K2)]);end;

%Delete rows & columns of Toeplitz to make TBT:

for J=0:N1-1;for I=0:M1+K4-N1;

IY1=(K2+1)*I+1+J*(K2+1):(K2+1)*(I+1)+J*(K2+1);

IY2=(N2+K2)*I+1:(N2+K2)*(I+1);

YY(IY1,IY2)=TT(:,:,J+1);end;end;

%Use (M2+1)th column of YY*GG=XX (GG = HH�1)
Z=zeros(YY1size,M1*M2);for I=0:M1-1;

Z([1:M2]+(K2+1)*I+(M2+1),[1:M2]+M2*I)=-eye(M2);end;

%Compute null vector of matrix using QR algorithm:

ZZ=[YY Z];[Q R]=qr(ZZ');K=size(Q,1);

XHAT1=Q(K-M1*M2+1:K,K);XHAT1=XHAT1/XHAT1(M2);

XHAT=reshape(XHAT1,M2,M1);XHAT=(flipud(XHAT))';[XHAT,X]

figure,imagesc(Y),title('BLURRED'),axis off

figure,imagesc(XHAT),title('RECONSTRUCTED'),axis off

6



12 Appendix C

clear;%Need M1>M2 (tall X) and H square.

X1=imread('eiffel.jpg');X2=X1(70:400,260:330);

X=X2(1:10:331,1:10:71);%Downsample by 10X10 w/o LPF

H=[3 1 4;1 5 9;2 6 5];Y=conv2(X,H);

figure,imagesc(X),colormap(gray),title('ORIGINAL')

figure,imagesc(Y),colormap(gray),title('BLURRED')

[M1,M2]=size(X);L=size(H,1);[N1,N2]=size(Y);

K1=ceil(((M1+M1+L-1)*(M2-1)+1)/(M1-M2));

K2=K1+1-M2;K4=L-1+K1;

YY1size=(M1+K4)*(K2+1);YY2size=(L+K1)*(K1+1);

for I=1:N1;TT(:,:,I)=toeplitz([Y(I,1);zeros(K2,1)],...

[Y(I,:) zeros(1,K2)]);end;

%Delete rows & columns of Toeplitz to make TBT:

for J=0:N1-1;for I=0:M1+K4-N1;

IY1=(K2+1)*I+1+J*(K2+1):(K2+1)*(I+1)+J*(K2+1);

IY2=(N2+K2)*I+1:(N2+K2)*(I+1);

YY(IY1,IY2)=TT(:,:,J+1);end;end;

Z=zeros(YY1size,M1*M2);

for I=0:M1-1;Z([1:M2]+(K2+1)*I+2,[1:M2]+M2*I)=-eye(M2);

end;ZZ=[YY Z];%Use SVD to compute null vector:

[UZ,SZ,VZ]=svd(ZZ);SZ1=diag(SZ);LZ=length(SZ1);

XHAT1=VZ(LZ-M1*M2+1:LZ,LZ);

XHAT1=XHAT1/XHAT1(M2)*X(1);

XHAT=reshape(XHAT1,M2,M1);XHAT=(flipud(XHAT))';

figure,imagesc(XHAT),colormap(gray),title('RECONSTRUCTED')

13 Appendix D

clear;X=[1 2 3;4 5 6]';H=[1 2;3 4];

%set up TBT matrix to confirm the 2-D FFT result.

Y=conv2(X,H);[M1,M2]=size(X);L=size(H,1);[N1,N2]=size(Y);

K1=ceil(((M1+M1+L-1)*(M2-1)+1)/(M1-M2));

K2=K1+1-M2;K4=L-1+K1;

YY1size=(M1+K4)*(K2+1);YY2size=(L+K1)*(K1+1);

for I=1:N1;TT(:,:,I)=toeplitz([Y(I,1);zeros(K2,1)],...

[Y(I,:) zeros(1,K2)]);end;

%Delete rows & columns of Toeplitz to make TBT:

for J=0:N1-1;for I=0:M1+K4-N1;

IY1=(K2+1)*I+1+J*(K2+1):(K2+1)*(I+1)+J*(K2+1);

IY2=(N2+K2)*I+1:(N2+K2)*(I+1);YY(IY1,IY2)=TT(:,:,J+1);

end;end;Z=zeros(YY1size,M1*M2);

for I=0:M1-1;Z([1:M2]+(K2+1)*I+1,[1:M2]+M2*I)=-eye(M2);end;

ZZ=[YY Z];%Now use the 2-F FFT and compare results:

W1=[1:(L+K1)*(K1+1)]';W2=reshape(W1,L+K1,K1+1);W2=W2';

D1=(L+K1)-(K2+1);D2=N2+L+K1-1;D3=N1+K1;n=nextpow2(max(D2,D3));

FY=fft2(fliplr(Y),2n ; 2n);FW=fft2(W2,2n ; 2n);
FQ=FY.*FW;Q=round(real(ifft2(FQ)));Q=Q';

Q4=Q((D1+1):(D2-D1),1:D3);Q5=Q4(:);X1=X(:);

for I=0:M1-1;Q5([1:M2]+(K2+1)*I+1)=Q5([1:M2]+(K2+1)*I+1)-...

X1([1:M2]+(M2*I));end;[ZZ*[W1;X(:)],Q5]%[YY*W1,Q5]

14 Appendix E

%First 4 and last 5 lines for example.
%X is PSF and H is image (for example).
clear;
load clown.mat;%200X200. Downsample to 50X50.
FX=�t2(X);FXD=FX;FXD(25:202-25,25:202-25)=0;
XD=real(i�t2(FXD));H=XD(1:4:end,1:4:end);
X=rand(30,3);Y=conv2(X,H);%Y is 79X52.
[M1,M2]=size(X);L=size(H,1);
K1=ceil(((M1+M1+L-1)*(M2-1)+1)/(M1-M2));
K2=K1+1-M2;K4=L-1+K1;
YY1size=(M1+K4)*(K2+1);YY2size=(L+K1)*(K1+1);
for I=1:(M1+L-1);TT(:,:,I)=toeplitz([Y(I,1);zeros(K2,1)],...
[Y(I,:) zeros(1,K2)]);end;
YY=zeros(YY1size,YY2size);
%Delete rows and columns of Toeplitz to make TBT:
for J=0:M1+L-2;for I=0:K4-L+1;
IY1=(K2+1)*I+1+J*(K2+1):(K2+1)*(I+1)+J*(K2+1);
IY2=(K2+M2+L-1)*I+1:(K2+M2+L-1)*(I+1);
YY(IY1,IY2)=TT(:,:,J+1);end;end;
%Delete rows of YY corresponding to nonzero rows of XX.
ZZ=YY;ZZ1=[];I1=[];
for I=0:M1-1;I1=[I1 ([1:M2]+(K2+1)*I+2)];end;
ZZ(I1,:)=[];ZZ1(1:length(I1),:)=YY(I1,:);
[U,S,V]=svd(ZZ);S1=diag(S);L1=length(S1);
XHAT1=ZZ1*V(:,L1);
XHAT1=XHAT1/XHAT1(M2)*X(1);%�x scale factor
XHAT=reshape(XHAT1,M2,M1);XHAT=(
ipud(XHAT))';
%XHAT,X,size(ZZ),S1(L1-1),S1(L1)
%Deconvolve image from known Y ans estimated PSF

XHAT.
FXHAT=�t2(XHAT,80,54);FY=�t2(Y,80,54);FHHAT=FY./FXHAT;
HHAT=real(i�t2(FHHAT));HHAT=HHAT(1:50,1:50);
�gure,imagesc(H),colormap(gray),title('ORIGINAL IM-

AGe')
�gure,imagesc(Y),colormap(gray),title('BLURRED IM-

AGe')
�gure,imagesc(HHAT),colormap(gray),...

title('RECONSTRUCTED IMAGE')

7


