
Two-Blur Blind Valid Image Deconvolution by Linear Algebra

Andrew E. Yagle

Dept. of EECS, The University of Michigan, Ann Arbor, MI 48109-2122

aey@eecs.umich.edu

April 9, 2021

Abstract

The 2-D blind deconvolution problem is to recon-
struct an unknown image from its known 2-D convo-
lution with an unknown point-spread function (PSF)
(2-D spatial impulse response). If both the unknown
image and unknown PSF have known �nite supports
(�nite nonzero regions), then the problem is overde-
termined and has a unique solution to a scale factor.
We address this problem in a separate paper. How-
ever, if only the PSF has known �nite support, then
the 2-D convolution is called a valid 2-D convolu-
tion, and the problem is underdetermined. We show
two unknown PSFs can be uniquely determined from
their valid 2-D convolutions with an unknown image,
which cannot be determined without additional in-
formation (sparsity in a wavelet basis).

1 Problem Statement

The two unknown PSFs are each (L � L) functions
fh1i;j ; h

2

i;j ; 0 � i; j � L{1g. The portion of unknown

image is the (M2 �M2) region fxi;j ; 1 � i:j �M2g,
(M4 pixels) which is a subset of a larger image.
We partition the region into M2 (M � M) subre-
gions fxki;j ;

1�i;j�M
1�k�M2 g (Fig.). The goal is to compute

fh1i;j ; h
2

i;jg from their valid convolutions with fxi;jg.
M

$
M

$
M l

M l

lM

lM

N
$

L�1
$

N
$

N l

L{1l

N l

l N

lL{1

l N

1.1 2-D Convolution

The linear (usual) 2-D convolution of hi;j and xi;j is

yi;j =
MX
m=1

MX
n=1

hi�m;j�nxm;n; 1 � i; j �M + L� 1

(1)
which is an (M + L� 1)� (M + L� 1) image.
The valid 2-D convolution of hi;j and xi;j is

yi;j =

MX
m=1

MX
n=1

hi�m;j�nxm;n; L � i; j �M (2)

which is an (M � L+ 1)� (M � L+ 1) image.
As a small but illustrative example, consider

xi;j =

2
4 1 2 3
4 5 6
7 8 9

3
5 ; hi;j =

�
11 12
13 14

�
: (3)

The linear convolution of hi;j and xi;j is

yi;j =

2
64
11 34 57 36
57 143 193 114
129 293 343 192
91 202 229 126

3
75 : (4)

The valid convolution of hi;j and xi;j is

yi;j =

�
143 193
293 343

�
: (5)

The valid convolution is the central part of the linear
convolution, obtained by deleting the edge rows and
columns from the linear convolution.

1

2 1-D Problem

To clarify the procedure, and since the problem is
interesting in its own right, we �rst present the 1-
D version of the procedure. The goal is to compute
the unknown impulse responses h1[n] and h2[n], each
having length L, and a lengthM2 portion x[n] of the
unknown 1-D signal from the valid 1-D convolutions

ym[n] =

M2X
n0=1

hm[n� n0]x[n0]; L � n �M2: (6)

where m=1,2. Since only parts of the linear convo-
lutions are known, this precludes use of z-transforms
or the polynomial greatest common divisor.
The procedure for the 1-D problem is as follows.
First, divide up the length-M2 signal x[n] into M

subsignals fxi[n]; i = 1 : : :Mg of length M , where

xi[n] = x[n]; (i�1)M+1 � n � iM; 1 � i �M: (7)

Next. since all of the 1-D convolutions between hm[n]
and xj [n] are valid, they can all be determined from
the overall 1-D valid convolution between hm[n] and
x[n] (the given data) by discarding segments of y1[n]
and y2[n] of lengths L{1. For example, let

x[n] = f1; 2; 3; 4; 5; 6; 7; 8; 9; 10g;h[n] = f1; 2g: (8)

Their valid convolution has length 10{2+1=9 and is

y[n] = f4; 7; 10; 13; 16; 19; 22:25; 28g: (9)

Now partition x[n] into two subsignals

x1[n] = f1; 2; 3; 4; 5g; x2[n] = f6; 7; 8; 9; 10g: (10)

The valid convolutions of h[n] with x1[n]; x2[n] are

y1[n] = f4; 7; 10; 13g; y2[n] = f19; 22; 25; 28g: (11)

Next, note that the valid 1-D convolution between
h[n] and x[n] can be implemented as the Toeplitz
matrix times column vector product

2
64
h1[L� 1] h[L� 2] � � � h[1] h[0] 0 � � � 0

0 h[L� 1] h[L� 2] � � � h[1] h[0] � � � 0
0 0 h[L� 1] h[L� 2] � � � h[1] h[0] 0
0 � � � 0 h[L� 1] h[L� 2] � � � h[1] h[0]

3
75
2
664
x[1]
x[2]
...

x[M]

3
775 =

2
664

y[L]
y[L+ 1]

...
y[M]

3
775 :

(12)

� The Toeplitz matrix is N �M ;

� the x-vector has length M ;

� the y-vector has length N , where

N =M � L+ 1 (13)

is the length of the valid 1-D convolution.
Next, note that the valid convolutions of hm[n] and

xj [n] can be combined into the matrix equation�
Y1

Y2

�
=

�
H1

H2

�
[X]: (14)

where the matrices Y1 and Y2 are de�ned as

y1j = [y1[1] : : : y1[N]]T ;Y1 = [y11j : : : jy
1
M]: (15)

y2j = [y2[1] : : : y2[N]]T ;Y2 = [y21j : : : jy
2
M]: (16)

xj = [xj [1] : : : xj [M]]T ; [X] = [x1j : : : jxM]: (17)

H1 andH2 are Toeplitz matrices like the one in (12).

Finally, note the matrices
h
Y1

Y2

i
and

h
H1

H2

i
are both

(2N �M). They are 'tall' (#rows=#columns+1) if

2N = 2(M � L+ 1) =M + 1!M = 2L� 1 (18)

in which case both matrices have a left null vector.
Assuming the matrix [X] has full rank, the left null

vector of
h
Y1

Y2

i
can be computed, and it will deter-

mine the elements of
h
H1

H2

i
. The 1st half of the left

null vector will be {h2[L{1{n] and the 2nd half of the
null vector will be h1[L{1{n], to a scale factor, which
is an unavoidable ambiguity in blind deconvolution.
This requires the portion of the original signal have
length M2 = (2L� 1)2 according to (18) in order to
form the matrix [X], which is (M �M).
It also means the original signal can be segmented

into segments having lengths M2 each, with each
segment having a di�erent impulse response. This
amounts to a spatially-varying impulse response.

2

3 1-D Problem Example

An unknown signal of length 9 is validly convolved
with two unknown impulse responses of lengths two
each. The results of the two valid convolutions are

y1[n] = f7; 6; 9; 7; 19; 20; 10; 17g; (19)

y2[n] = f15; 16; 19; 19; 47; 42; 26; 39g:

Compute the two impulse responses and the signal.
We have L=2 andM=3 since the signal has length

M2=9.
Delete every 3rd signal segment of length L{1=1:

y1[n] = f7; 6; 7; 19; 10; 17g; (20)

y2[n] = f15; 16; 19; 47; 26; 39g;

and rearranging the remaining elements gives

Y1 =

�
7 7 10
6 19 17

�
; Y2 =

�
15 19 26
16 47 39

�
: (21)

The left null vector of [Y1

Y2

] is [{4,{3,2,1] after divid-
ing by the last element of the row vector (this is the
scale factor). The sign of the �rst impulse response
is due to the necessity of the product of the left null
vector and [H1

H2

] to be zero. From the structure of the
Toeplitz matrix in (12) the impulse responses are

h1[n] = f1; 2g; h2[n] = f3; 4g: (22)

Solving the two-Toeplitz system

�
Y1

Y2

�
=

�
H1

H2

�
[X] (23)

and unwrapping [X] yields (see Appendix A)

x[n] = f3; 1; 4; 1; 5; 9; 2; 6; 5g: (24)

These are the correct answers (after normalization).

4 2-D Problem

Now we consider the 2-D version of the problem.
The changes from the 1-D version are as follows.

� The unknown image xi;j is an (M
2�M2) subset

of a larger image, which we term the superimage;

� The unknown PSFs are (L� L) h1i;j and h
2

i;j ;

� The known valid 2-D convolutions of xi;j with
h1i;j and h

2

i;j are two (M
2�L+1)� (M2�L+1)

blurred images y1i;j and y
2

i;j ;

� The (M2 � M2) image is partitioned into M2

(M�M) subimages fxki;jg k=1: : :M
2 (see Fig.);

� Before partitioning y1i;j and y2i;j , bands of rows
and columns of width L{1 are deleted (see Fig.);

� Each (M2�L+1)� (M2�L+1) blurred image
ymi;j ;m = 1; 2 is partitioned into M2 (N � N)

subimages fy1;ki;j ; y
2;k
i;j ; 1 � k �M2g (see Fig.);

� Each subimage y1;ki;j and y2;ki;j is the valid 2-D con-

volution of subimage xki;j with h
1

i;j and h
2

i;j ;

� The matrix [X] is now (M2 �M2), and the kth

column consists of xki;j unwrapped by columns;

� MatricesH1 andH2 are now block Toeplitz with
Toeplitz blocks (TBT); a matrix-vector product
implements valid 2-D convolution;

� (18) becomes 2N2=2(M{L+1)2 > M2.

The following table lists the minimum value of M
associated with each value of L. Recall N=M{L+1.

L M 2N2 M2

2 4 18 16
3 7 50 49
4 11 128 121
5 14 200 196

If the #rows exceeds the #columns by more than
one, there are multiple null vectors. In this case, the
null vector times the TBT [H1

H2

] must be rearranged
into a TBT system, consisting of the elements of the
null vectors, for the elements of h1i;j and h

2

i;j .

3

5 2-D Problem Example

This small but illustrative example illustrates the fol-
lowing aspects of the procedure:

� The ability to handle a spatially-varying PSF in
di�erent parts of the superimage;

� The divide-and-conquer ability due to the use of
valid 2-D convoluions throughout;

� The need to use sparsity of the image in a wavelet
basis to compute it from h1i;j and h

2

i;j .

The example is as follows:

1. A (48 � 48) superimage was created by down-
sampling a (200� 200) clown image by (4� 4),
after clipping it to (192� 192);

2. This (48�48) superimage was in turn partitioned
into (48

16
)2=9 (16 � 16) images. The two PSFs

were spatially-invariant within each image, but
varied over the superimage;

3. The 9 pairs of (2 � 2) PSFs, one pair for each
image, were composed of the digits of �;

4. Each (16�16) image was in turn partitioned into
(16
4
)2=16 (4� 4) subimages;

5. Each (4�4) subimage was validly convolved with
a pair of (2�2) PSFs, resulting in a pair of (3�3)
blurred subimages, where 4{2+1=3;

6. Unwrapping the 16 (4�4) subimages by columns
resulted in a (16� 16) matrix [X];

7. Unwrapping the 16 (3�3) blurred subimages by
columns resulted in a (9� 16) matrix. Stacking
the two (9� 16) (one for each of the two PSFs)

matrices resulted in a (18� 16) matrix [Y
1

Y2

];

8. The matrices [X] and [Y
1

Y2

] are related by

�
Y1

Y2

�
=

�
H1

H2

�
[X] (25)

where [H1] and [H2] are TBT matrices that im-
plement valid 2-D convolutionw;

9. Despite [H
1

H2

] being a "tall" (18� 16) matrix, it
only has rank 14. So [25] is actually underde-
termined, so even when the two PSFs are deter-
mined the image cannot be computed without
additional information. This is discussed in de-
tail in [1], where three PSFs are shown to be
necessary to determine the image;

10. We use the sparsity of the image in the Haar
wavelet transform as the additional information.
We had planned to use iterative reweighted least
squares (the FOCUSS algorithm) to minimize
the `1 norm of the image, but simple least-
squares gave visually good results (see below).

To compute the 2-D Haar wavelet transform, let

W =

2
664

1p
2

� 1p
2

0 0

0 0 1p
2

� 1p
2

1

2

1

2
� 1

2
� 1

2
1

2

1

2

1

2

1

2

3
775 (26)

Then the 2-D Haar wavelet transform of image X is

WXW T = (W
W)X(:) = (WW)X(:) (27)

and Y = HX ! Y = H(WW)T (WW): (28)

BLURRED IMAGE USING PSF #1 BLURRED IMAGE USING PSF #2

ORIGINAL IMAGE RECONSTRUCTED IMAGE

4

Finally, we note that if the image is known to have
�nite support then a single blurred image suÆces to
determine the image. A method is presented in [2].

6 References

1. G. Harikumar and Y. Bresler, "Exact Image De-
convolution from Multiple FIR Filters," IEEE

Trans. Image Processing 8(6), 846-862, 1999.

2. A.E. Yagle, "2-D Blind Deconvolution for
Compactly-Supported Images by Finding a Null
vector of a Toeplitz-Block-Toeplitz Linear Sys-
tem of Equations," April 2021.

7 Appendix A

This Matlab program implements the 1-D procedure.
clear

X=[3,1,4,1,5,9,2,6,5];H1=[1 2];H2=[3 4];

L=length(H1);M=sqrt(length(X));

Y1=conv(X,H1);Y2=conv(X,H2);%length=M*M+L-1.

Y1V=Y1(L:M*M);Y2V=Y2(L:M*M);%length=M*M-L+1.

%GOAL:Compute H1 and H2 from Y1V and Y2V.

%Delete elements of Y1V and Y2V.

IY=[];for I=0:M-1;

IY=[IY M*I+[1:M-L+1]];end;

Y1V=Y1V(IY);Y2V=Y2V(IY);

%Form matrices Y21 and Y22.

Y21=reshape(Y1V,M-L+1,M);

Y22=reshape(Y2V,M-L+1,M);

%Find left null vector.

YY=[Y21;Y22];N=null(YY');N=N/N(2*L);

H1EST=N(2*L:-1:L+1);H2EST=-N(L:-1:1);

H1,H1EST,H2,H2EST

%Compute X2 from [Y21;Y22] and [H21;H22].

H21=toeplitz([H1(L);zeros(M-L,1)],...

[fliplr(H1) zeros(1,M-L)]);

H22=toeplitz([H2(L);zeros(M-L,1)],...

[fliplr(H2) zeros(1,M-L)]);

HH=[H21;H22];XEST=pinv(HH)*YY,

X2=reshape(X,M,M)

8 Appendix B

This Matlab program implements the 2-D procedure.
clear;M=11;L=4;

%Valid Blind Deconvolution From 2 Blurs

%Image is (M*M)X(M*M). PSFs are both LXL.

M=11;X=rand(M*M,M*M);

L=4;H1=rand(L,L)';H2=rand(L,L)';

Y1V=conv2(X,H1,'valid');N=M-L+1;

Y2V=conv2(X,H2,'valid');

%GOAL: Compute H1 & H2 from Y1V & Y2V.

%Delete rows and columnd of Y1V & Y2V.

II=[];for I=0:M-1;II=[II [1:N]+M*I];end;

Y1V=Y1V(II,II);Y2V=Y2V(II,II);

%Partition Y1V & Y2V and unwrap.

for I=1:M;for J=1:M;

Y21(1:N,1:N,I,J)=Y1V([1:N]+N*(I-1),[1:N]+N*(J-1));

Y22(1:N,1:N,I,J)=Y2V([1:N]+N*(I-1),[1:N]+N*(J-1));

X2(1:M,1:M,I,J)=X([1:M]+M*(I-1),[1:M]+M*(J-1));

end;end;

YY1=[];YY2=[];XX=[];

for I=1:M;for J=1:M;

YY1=[YY1 reshape(Y21(1:N,1:N,I,J),N*N,1)];

YY2=[YY2 reshape(Y22(1:N,1:N,I,J),N*N,1)];

XX=[XX reshape(X2(1:M,1:M,I,J),M*M,1)];

end;end;

%Find left null vector.

NN=null([YY2;YY1]');

N1=NN(1:N*N,1);N2=NN(N*N+1:2*N*N,1);

for I=1:N;

NN1(:,:,I)=toeplitz([N1(N*(I-1)+1);zeros(L-1,1)],...

[N1(N*(I-1)+1:N*(I-1)+N)' zeros(1,L-1)]);

NN2(:,:,I)=toeplitz([N2(N*(I-1)+1);zeros(L-1,1)],...

[N2(N*(I-1)+1:N*(I-1)+N)',zeros(1,L-1)]);end;

%Assemble TBT matrix from null vector.

A1=zeros(L,M);A2=zeros(L,M);

for I=0:L-1;for J=I+1:N;

A1(I*L+[1:L],J*M+[1:M])=NN1(:,:,J-I);

A2(I*L+[1:L],J*M+[1:M])=NN2(:,:,J-I);

end;end;

HEST=null([A1;A2]');

%Reverse and scale estimates of PSFs.

HEST=flipud(HEST)/HEST(L*L)*H2(1,1);

reshape(HEST(1:L*L),L,L),H1

reshape(HEST(L*L+1:2*L*L),L,L),H2

5

9 Appendix C

This Matlab program implements the 2-D rxample.
%Valid 2-D 2-blur blind deconvolution of clown.

%image with 2 spatially-varying PSFs.
clear;load clown.mat;%200X200.Downsample to 48X48.
FX=fft2(X);FX=FX;FX(25:202-25,25:202-25)=0;
X=real(ifft2(FX));X=X(4:4:193,4:4:193);
%Segment 48X48 superimage X into 9 16X16 images X2.

for K1=1:3;K11=[1:16]+(K1-1)*16;
for K2=1:3;K21=[1:16]+(K2-1)*16;
K3=(K1-1)+(K2-1)*3+1;
X2(1:16,1:16,K3)=X(K11,K21);end;end;
%Segment each 16X16 image X2 into 16 4X4 images X3.

for K=1:9;for K1=1:4;K11=[1:4]+(K1-1)*4;
for K2=1:4;K21=[1:4]+(K2-1)*4;K3=(K1-1)+(K2-1)*4+1;
X3(1:4,1:4,K3,K)=X2(K11,K21,K);end;end;end;
%Segment PSFs H,G into spatially-varying PSFs H2,G2.
H=[3 1 4 1 5 9;2 6 5 3 5 8;9 7 9 3 2 3;8 4 6 2 6 4];
H=[H;3 3 8 3 2 7;9 5 0 2 8 8];

G=[4 1 9 7 1 6;9 3 9 9 3 7;5 1 1 5 8 2;0 9 7 4 9 4];
G=[G;4 5 9 2 3 0;7 8 1 6 4 0];
for K1=1:3;K11=[1:2]+2*(K1-1);
for K2=1:3;K21=[1:2]+2*(K2-1);K3=(K1-1)+(K2-1)*3+1;
H2(1:2,1:2,K3)=H(K11,K21);

G2(1:2,1:2,K3)=G(K11,K21);end;end;
%Valid 2D convs of images w/ spatially-varying PSFs.
%Want to do this: %for K=1:9;
%Y(1:15,1:15,K)=conv2(X2(:,:,K),H2(:,:,K),'valid');
%end;%but gives wrong answer! But this does work:

%Y1=conv2(X2(:,:,7),H2(:,:,7),'valid');Y1(13:15,9:12)
%No idea why this is. So implement using matrices.
HZ=zeros(3,4);
for K=1:9;H2(1:2,1:2,K)=H2(1:2,1:2,K)';
H11(1:3,1:4,K)=[H2(2,1,K) H2(1,1,K) 0 0;...
0 H2(2,1,K) H2(1,1,K) 0;0 0 H2(2,1,K) H2(1,1,K)];

H12(1:3,1:4,K)=[H2(2,2,K) H2(1,2,K) 0 0;0 ...
H2(2,2,K) H2(1,2,K) 0;0 0 H2(2,2,K) H2(1,2,K)];
HH1(1:9,1:16,K)=[H12(:,:,K) H11(:,:,K) HZ HZ;HZ ...
H12(:,:,K) H11(:,:,K) HZ;HZ HZ H12(:,:,K) H11(:,:,K)];
G2(1:2,1:2,K)=G2(1:2,1:2,K)';%2nd PSF matrices.

G11(1:3,1:4,K)=[G2(2,1,K) G2(1,1,K) 0 0;...
0 G2(2,1,K) G2(1,1,K) 0;0 0 G2(2,1,K) G2(1,1,K)];
G12(1:3,1:4,K)=[G2(2,2,K) G2(1,2,K) 0 0;0 ...
G2(2,2,K) G2(1,2,K) 0;0 0 G2(2,2,K) G2(1,2,K)];
GG1(1:9,1:16,K)=[G12(:,:,K) G11(:,:,K) HZ HZ;HZ ...

G12(:,:,K) G11(:,:,K) HZ;HZ HZ G12(:,:,K) G11(:,:,K)];
end;%Use matrices to compute valid 2-D convolutions.
%Unwrap subimages into columns.
for K=1:9;XX=[];for K3=1:16;
X4=X3(1:4,1:4,K3,K);X5=X4(:);XX=[XX X5];end;
X6(1:16,1:16,K)=XX;

end;%Assemble blurred images.
for K=1:9;YY(1:9,1:16,K)=HH1(:,:,K)*X6(:,:,K);
ZZ(1:9,1:16,K)=GG1(:,:,K)*X6(:,:,K);end;
for K=1:9;for K3=1:16;
Y3(1:3,1:3,K3,K)=reshape(YY(1:9,K3,K),3,3);

Z3(1:3,1:3,K3,K)=reshape(ZZ(1:9,K3,K),3,3);end;
for K1=1:3;K11=[1:3]+(K1-1)*3;
for K2=1:3;K21=[1:3]+(K2-1)*3;K3=(K1-1)+(K2-1)*4+1;
Y2(K11,K21,K)=Y3(1:3,1:3,K3,K);
Z2(K11,K21,K)=Z3(1:3,1:3,K3,K);end;end;end;
for K1=1:3;K11=[1:9]+(K1-1)*9;

for K2=1:3;K21=[1:9]+(K2-1)*9;
K3=(K1-1)+(K2-1)*3+1;
Y(K11,K21)=Y2(:,:,K3);
Z(K11,K21)=Z2(:,:,K3);end;end;

figure,imagesc(Y),colormap(gray),axis off
title('BLURRED IMAGE USING PSF #1')
figure,imagesc(Z),colormap(gray),axis off
title('BLURRED IMAGE USING PSF #2')
%Finished with problem setup (finally!)
%GOAL: Compute HEST and GEST and XEST from Y and Z,
for K=1:9;%Find left null vector of [ZZ;YY].
[U S V]=svd([ZZ(:,:,K);YY(:,:,K)]');N(:,1)=V(:,15);
N11=[N(1,1) N(2,1) N(3,1) 0;0 N(1,1) N(2,1) N(3,1)];
N21=[N(4,1) N(5,1) N(6,1) 0;0 N(4,1) N(5,1) N(6,1)];
N31=[N(7,1) N(8,1) N(9,1) 0;0 N(7,1) N(8,1) N(9,1)];
NZ=zeros(2,4);A1=[N11 N21 N31 NZ;NZ N11 N21 N31];
N12=[N(10,1) N(11,1) N(12,1) 0;0 N(10,1) N(11,1) N(12,1)];
N22=[N(13,1) N(14,1) N(15,1) 0;0 N(13,1) N(14,1) N(15,1)];
N32=[N(16,1) N(17,1) N(18,1) 0;0 N(16,1) N(17,1) N(18,1)];
NZ=zeros(2,4);A2=[N12 N22 N32 NZ;NZ N12 N22 N32];
%Compute estimates of 2 spatially-varying PSFs.
[U S V]=svd([A1;A2]');H1EST=V(:,8);
H1EST=flipud(H1EST)/H1EST(4)*G2(1,1,K);%Fix scale factor.
HEST(1:2,1:2,K)=reshape(H1EST(1:4),2,2);%Estimate 1st PSF.
GEST(1:2,1:2,K)=reshape(H1EST(5:8),2,2);%Estimate 2ns PSF.
%Form matrices HH1 and HH2 using HEST and GEST.
HEST(1:2,1:2,K)=HEST(1:2,1:2,K)';
H11EST(1:3,1:4,K)=[HEST(2,1,K) HEST(1,1,K) 0 0;...
0 HEST(2,1,K) HEST(1,1,K) 0;0 0 HEST(2,1,K) HEST(1,1,K)];
H12EST(1:3,1:4,K)=[HEST(2,2,K) HEST(1,2,K) 0 0;0 ...
HEST(2,2,K) HEST(1,2,K) 0;0 0 HEST(2,2,K) HEST(1,2,K)];
HH1EST(1:9,1:16,K)=[H12EST(:,:,K) H11EST(:,:,K) HZ HZ;...
HZ H12EST(:,:,K) H11EST(:,:,K) HZ;HZ HZ H12EST(:,:,K)...
H11EST(:,:,K)];
GEST(1:2,1:2,K)=GEST(1:2,1:2,K)';%2nd PSF matrices.
G11EST(1:3,1:4,K)=[GEST(2,1,K) GEST(1,1,K) 0 0;...
0 GEST(2,1,K) GEST(1,1,K) 0;0 0 GEST(2,1,K) GEST(1,1,K)];
G12EST(1:3,1:4,K)=[GEST(2,2,K) GEST(1,2,K) 0 0;0 ...
GEST(2,2,K) GEST(1,2,K) 0;0 0 GEST(2,2,K) GEST(1,2,K)];
GG1EST(1:9,1:16,K)=[G12EST(:,:,K) G11EST(:,:,K) HZ HZ;...
HZ G12EST(:,:,K) G11EST(:,:,K) HZ;HZ HZ G12EST(:,:,K)...
G11EST(:,:,K)];
%K&actual values of PSFs are displayed as integers.
%Computed values of PSFs are displayed to 4 digits.
K,H2(:,:,K)',HEST(:,:,K),G2(:,:,K)',GEST(:,:,K),end;
%Noe compute XEST from HEST & GESY & Y & Z.
%Now compute image using reconstructed PSFs and
%wavelet transform of image, which is sparse.
W=sqrt(2)/2*[1,-1,0,0;0,0,1,-1];%Haar wavelet
W=[W;.5,.5,-.5,-.5;.5,.5,.5,.5];%transform
WW=kron(W,W);
for K=1:9;%Y=H*X -> Y=(H*WW')*(WW*X).
YYY(:,:,K)=[YY(:,:,K);ZZ(:,:,K)];
HHH(:,:,K)=[HH1(:,:,K);GG1(:,:,K)]*WW';
X6HAT(1:16,1:16,K)=pinv(HHH(:,:,K))*YYY(:,:,K);
%Inverse wavelet transform.
X6HAT(:,:,K)=WW'*X6HAT(:,:,K);
%Assemble subimage estmates into superimage.
for K3=1:16;X3HAT(1:4,1:4,K3,K)=...
reshape(X6HAT(1:16,K3,K),4,4);end;
for K1=1:4;K11=[1:4]+(K1-1)*4;
for K2=1:4;K21=[1:4]+(K2-1)*4;
K3=(K1-1)+(K2-1)*4+1;
X2HAT(K11,K21,K)=X3HAT(1:4,1:4,K3,K);end;end;end;
for K1=1:3;K11=[1:16]+(K1-1)*16;
for K2=1:3;K21=[1:16]+(K2-1)*16;
K3=(K1-1)+(K2-1)*3+1;
XHAT(K11,K21)=X2HAT(:,:,K3);end;end;
figure,imagesc(XHAT),colormap(gray),axis off
title('RECONSTRUCTED IMAGE')

6

