Two-Blur Blind Valid Image Deconvolution by Linear Algebra

Andrew E. Yagle
Dept. of EECS, The University of Michigan, Ann Arbor, MI 48109-2122
aey@eecs.umich.edu

April 9, 2021

Abstract

The 2-D blind deconvolution problem is to recon-
struct an unknown image from its known 2-D convo-
lution with an unknown point-spread function (PSF)
(2-D spatial impulse response). If both the unknown
image and unknown PSF have known finite supports
(finite nonzero regions), then the problem is overde-
termined and has a unique solution to a scale factor.
We address this problem in a separate paper. How-
ever, if only the PSF has known finite support, then
the 2-D convolution is called a walid 2-D convolu-
tion, and the problem is underdetermined. We show
two unknown PSFs can be uniquely determined from
their valid 2-D convolutions with an unknown image,
which cannot be determined without additional in-
formation (sparsity in a wavelet basis).

1 Problem Statement

The two unknown PSFs are each (L x L) functions
{h}.,h?.,0 <i,j < L-1}. The portion of unknown

ij> i
image is the (M? x M?) region {z; ;,1 < i.j < M?},
(M* pixels) which is a subset of a larger image.

We partition the region into M? (M x M) subre-
gions {z} ;, Ezg\%} (Fig.). The goal is to compute

{h} . k2 .} from their valid convolutions with {z; ;}.

b it M N L-1 N

M B VA N i | |
L-1% IL-1

M3 tM NP tN

1.1 2-D Convolution

The linear (usual) 2-D convolution of h; ; and z; ; is

M M
Yii= > Y hicmjonTmn, 1<, j <M+ L-1
m=1n=1
(1)
which isan (M + L — 1) x (M + L — 1) image.
The wvalid 2-D convolution of h; ; and z; ; is
M M
Yij = Z Z hiemj—nTmn, L <i,5 <M (2)
m=1n=1

which isan (M — L+ 1) x (M — L + 1) image.
As a small but illustrative example, consider

1 2 3
] b

The linear convolution of h; ; and z; ; is

11 34 57 36

| 57 143 193 114 @
Yii= 1120 293 343 192
91 202 229 126
The valid convolution of h; ; and z; ; is
143 193
Yig = {293 343]‘ ®)

The valid convolution is the central part of the linear
convolution, obtained by deleting the edge rows and
columns from the linear convolution.



2 1-D Problem

To clarify the procedure, and since the problem is
interesting in its own right, we first present the 1-
D version of the procedure. The goal is to compute
the unknown impulse responses h'[n] and h%[n], each
having length L, and a length M? portion z[n] of the
unknown 1-D signal from the valid 1-D convolutions

M2
y"[n] = Z h"n —nlz[n'],L <n < M?%  (6)

n/=1

where m=1,2. Since only parts of the linear convo-
lutions are known, this precludes use of z-transforms
or the polynomial greatest common divisor.
The procedure for the 1-D problem is as follows.
First, divide up the length-M? signal z[n] into M
subsignals {z;[n],i = 1... M} of length M, where

zinl=zh],(i-1)M+1<n<iM,1<i< M. (7)

Next. since all of the 1-D convolutions between h™[n]
and ;[n| are valid, they can all be determined from
the overall 1-D valid convolution between h™[n] and
x[n] (the given data) by discarding segments of y'[n]
and y?[n] of lengths L—1. For example, let

z[n] = {1,2,3,4,5,6,7,8,9,10}; hn] = {1,2}. (8)
Their valid convolution has length 10-2+1=9 and is
y[n] = {4,7,10,13,16,19,22.25,28}.  (9)
Now partition z[n] into two subsignals
z1[n] ={1,2,3,4,5}; =:[n] ={6,7,8,9,10}. (10)
The valid convolutions of h[n] with z1[n], z3[n] are
yi1[n] = {4,7,10,13}; yo[n] = {19,22,25,28}. (11)

Next, note that the valid 1-D convolution between
h[n] and z[n] can be implemented as the Toeplitz
matrix times column vector product

hL—1] h[L-2] h[1] h[0]
0 hL—1 hL-2 - h[1]
0 0  hL-1] AL-2 -
0 0 AL —1] h[L—2]

e The Toeplitz matrix is N x M;

e the z-vector has length M;

e the y-vector has length N, where
N=M-L+1

is the length of the valid 1-D convolution.
Next, note that the valid convolutions of A™[n] and
xj[n] can be combined into the matrix equation

(13)

)=l

where the matrices Y; and Yo are defined as
vi =Wy NI Y =il -yl (15)
yi =M. [N Yo = [y3l .. lyja)- (16)
x; = [0 ..y [M]]75 [X] = [xa] o [xna): (A7)

H, and H are Toeplitz matrices like the one in (12).
Finally, note the matrices [5;] and [g;] are both
(2N x M). They are 'tall’ (#rows=#columns+1) if

IN=2M —L+1)=M+1—M=2L-1 (18)

in which case both matrices have a left null vector.
Assuming the matrix [X] has full rank, the left null

vector of ¥; can be computed, and it will deter-

mine the elements of [g:] The 1% half of the left

null vector will be —h%[L—1-n] and the 2"? half of the
null vector will be h'[L-1-n], to a scale factor, which
is an unavoidable ambiguity in blind deconvolution.
This requires the portion of the original signal have
length M? = (2L — 1)? according to (18) in order to
form the matrix [X], which is (M x M).

It also means the original signal can be segmented
into segments having lengths M? each, with each
segment having a different impulse response. This
amounts to a spatially-varying impulse response.

0 0 x[1] y[L]
ho] -~ 0 z[2] B y[L + 1]
h[1] h[0] O ol :

-+ R RO L aan y[M]



3 1-D Problem Example

An unknown signal of length 9 is validly convolved
with two unknown impulse responses of lengths two
each. The results of the two valid convolutions are

{7,6,9,7,19,20,10,17};
{15,16,19, 19,47, 42, 26, 39}.

y1[n] (19)

y2[n] =
Compute the two impulse responses and the signal.
We have L=2 and M =3 since the signal has length
M?=09.
Delete every 3"¢ signal segment of length L-1=1:

{7,6,7,19,10,17};
{15,16,19,47, 26, 39},

yi[n] = (20)

ya[n] =
and rearranging the remaining elements gives

77 10 15 19 26
Yl_{fs 19 17]’ Yz_[16 47 39}' (21)

The left null vector of [5:] is [-4,-3,2,1] after divid-
ing by the last element of the row vector (this is the
scale factor). The sign of the first impulse response
is due to the necessity of the product of the left null
vector and [g;] to be zero. From the structure of the
Toeplitz matrix in (12) the impulse responses are

hi[n] = {1,2}; haln] = {3,4}. (22)
Solving the two-Toeplitz system
Y| [Hi
MR (23)
and unwrapping [X] yields (see Appendix A)
z[n] = {3,1,4,1,5,9,2,6,5}. (24)

These are the correct answers (after normalization).

4 2-D Problem

Now we consider the 2-D version of the problem.
The changes from the 1-D version are as follows.

e The unknown image z; ; is an (M? x M?) subset
of a larger image, which we term the superimage;

e The unknown PSFs are (L x L) hl{j and h?,j;

e The known valid 2-D convolutions of z;; with
hi ; and h? ; are two (M? — L41) x (M?>—L+1)
blurred images y; ; and y; ;;

e The (M? x M?) image is partitioned into M?>
(M x M) subimages {z ;} k=1... M? (see Fig.);

e Before partitioning y; ; and y7 ;, bands of rows
and columns of width L1 are deleted (see Fig.);

e Each (M2 —L+1)x (M?— L+1) blurred image
ys,m = 1,2 is partitioned into M*> (N x N)
subimages {ylljk,yfjk, 1 <k < M?} (see Fig.);

e Each subimage yll;” and yf]]” is the valid 2-D con-

volution of subimage =¥ ; with hj ; and A7 ;;

e The matrix [X] is now (M? x M?), and the k‘"

column consists of mfj unwrapped by columns;

e Matrices Hy and Hs are now block Toeplitz with
Toeplitz blocks (TBT); a matrix-vector product
implements valid 2-D convolution;

e (18) becomes 2N?=2(M-L+1)? > M?.

The following table lists the minimum value of M
associated with each value of L. Recall N=M-L+1.

L| M]|2N? | M?
2| 4 18 16
3|7 50 49
4 |11 | 128 | 121
5 | 14 | 200 | 196

If the #rows exceeds the #columns by more than
one, there are multiple null vectors. In this case, the
null vector times the TBT [g;] must be rearranged
into a TBT system, consisting of the elements of the
null vectors, for the elements of hj ; and A7 ;.



5

2-D Problem Example

This small but illustrative example illustrates the fol-
lowing aspects of the procedure:

The

The ability to handle a spatially-varying PSF in
different parts of the superimage;

The divide-and-conquer ability due to the use of
valid 2-D convoluions throughout;

The need to use sparsity of the image in a wavelet
basis to compute it from h; ; and h7 ;.

example is as follows:

A (48 x 48) superimage was created by down-
sampling a (200 x 200) clown image by (4 x 4),
after clipping it to (192 x 192);

This (48 x48) superimage was in turn partitioned
into (12)?=9 (16 x 16) images. The two PSFs
were spatially-invariant within each image, but
varied over the superimage;

The 9 pairs of (2 x 2) PSFs, one pair for each
image, were composed of the digits of ;

Each (16 x 16) image was in turn partitioned into
(16)2=16 (4 x 4) subimages;

Each (4x4) subimage was validly convolved with
a pair of (2x2) PSFs, resulting in a pair of (3x 3)
blurred subimages, where 4-2+1=3;

Unwrapping the 16 (4 x4) subimages by columns
resulted in a (16 x 16) matrix [X];

Unwrapping the 16 (3 x 3) blurred subimages by
columns resulted in a (9 x 16) matrix. Stacking
the two (9 x 16) (one for each of the two PSFs)

. . -7 Y?
matrices resulted in a (18 x 16) matrix [y_[;

The matrices [X] and [¥:] are related by

Y! H!
vl = [
2 2
where [H'] and [H?] are TBT matrices that im-
plement valid 2-D convolutionw;

(25)

9.

10.

Despite [g:] being a "tall” (18 x 16) matrix, it
only has rank 14. So [25] is actually underde-
termined, so even when the two PSFs are deter-
mined the image cannot be computed without
additional information. This is discussed in de-
tail in [1], where three PSFs are shown to be
necessary to determine the image;

We use the sparsity of the image in the Haar
wavelet transform as the additional information.
We had planned to use iterative reweighted least
squares (the FOCUSS algorithm) to minimize
the ¢; norm of the image, but simple least-
squares gave visually good results (see below).

To compute the 2-D Haar wavelet transform, let

1 1
n w00
0 0 1 1

W = V2 V2 (26)
1 1 1 1
2 2 2 2
1 1 1 1
2 2 2 2

Then the 2-D Haar wavelet transform of image X is

WXWE =(WaoW)X(:)=(WW)X(:) (27

and Y =HX »Y = HWW)T(WW).

(28)




Finally, we note that if the image is known to have 8 Appendix B
finite support then a single blurred image suffices to
determine the image. A method is presented in [2]. ~ This Matlab program implements the 2-D procedure.
clear;M=11;L=4;
%Valid Blind Deconvolution From 2 Blurs
6 References %Image is (M*M)X(M+M). PSFs are both LXL.

M=11;X=rand (M*M, M*M) ;
1. G. Harikumar and Y. Bresler, ”Exact Image De- L=4;Hi=rand(L,L)’;H2=rand(L,L)’;

convolution from Multlple FIR Filters,” IEEE Y1V=conv?2 (X s H1 s Yyvalid? ) ;N=M—L+1 ;
Trans. Image Processing 8(6), 846-862, 1999. Y2V=conv2(X,H2, *valid’);

%GOAL: Compute H1 & H2 from Y1V & Y2V.

%Delete rows and columnd of Y1V & Y2V.

IT=[];for I=0:M-1;II=[II [1:N]+Mx*I];end;

Y1V=Y1V(II,II);Y2V=Y2V(II,II);

%Partition Y1V & Y2V and unwrap.

for I=1:M;for J=1:M;

7 Appendix A Y21 (1:N,1:N,T,J)=Y1V([1:N]+N*(I-1), [1:N]+N*(J-1));
Y22(1:N,1:N,I,J)=Y2V([1:N]J+N*(I-1), [1:N]J+N*(J-1));

This Matlab program implements the 1-D procedure. X2(1:M,1:M,I,T)=X([1:M]+M*x(I-1),[1:M]+M*x(J-1));

2. AE. Yagle, 7”2-D Blind Deconvolution for
Compactly-Supported Images by Finding a Null
vector of a Toeplitz-Block-Toeplitz Linear Sys-
tem of Equations,” April 2021.

clear end;end;
X=[3,1,4,1,5,9,2,6,5];H1=[1 2] ;H2=[3 4]; YY1=[1;YY2=[]1;XX=[1;
L=length(H1) ;M=sqrt (length(X)); for I=1:M;for J=1:M;

Yi=conv(X,H1) ;Y2=conv(X,H2) ;) length=M*M+L-1. YY1=[YY1 reshape(Y21(1:N,1:N,I,J) ,N*N,1)];
Y1V=Y1(L:M*M) ; Y2V=Y2 (L:M*M) ; %length=M*M-L+1. YY2=[YY2 reshape(¥22(1:N,1:N,I,J),N*N,1)];

%GOAL: Compute H1 and H2 from Y1V and Y2V. XX=[XX reshape(X2(1:M,1:M,I,J),M*M,1)];

%Delete elements of Y1V and Y2V. end;end;

I1Y=[];for I=0:M-1; %Find left null vector.

IY=[IY M*I+[1:M-L+1]];end; NN=null ([YY2;YY1]’);

Y1V=Y1V(IY) ;Y2V=Y2V(IY); N1=NN(1:N*N,1) ; N2=NN (N*N+1:2*xN*N,1) ;

%Form matrices Y21 and Y22. for I=1:N;

Y21=reshape(Y1V,M-L+1,M); NN1(:,:,I)=toeplitz([N1(N*(I-1)+1);zeros(L-1,1)],...
Y22=reshape (Y2V,M-L+1,M); [N1(N*(I-1)+1:N*x(I-1)4N)’ zeros(1,L-1)]1);

%Find left null vector. NN2(:,:,I)=toeplitz([N2(N*(I-1)+1);zeros(L-1,1)],...
YY=[Y21;Y22] ;N=null(YY’) ;N=N/N(2xL) ; [N2(N*(I-1)+1:N*x(I-1)+N)’,zeros(1,L-1)]);end;
H1EST=N(2*L:-1:L+1) ;H2EST=-N(L:-1:1); %Assemble TBT matrix from null vector.
H1,H1EST,H2,H2EST Al=zeros(L,M) ;A2=zeros(L,M);

%Compute X2 from [Y21;Y22] and [H21;H22]. for I=0:L-1;for J=I+1:N;

H21=toeplitz([H1(L) ;zeros(M-L,1)],... A1 (I*L+[1:L],J*M+[1:M])=NN1(:,:,J-1);

[fliplr(H1) zeros(1,M-L)1); A2(I*L+[1:L],J*M+[1:M])=NN2(:,:,J-I);

H22=toeplitz ([H2(L) ;zeros(M-L,1)],... end;end;

[fliplr(H2) zeros(1,M-L)1); HEST=null ([A1;A2]’);

HH=[H21;H22] ; XEST=pinv (HH) *YY, %Reverse and scale estimates of PSFs.

X2=reshape (X,M,M) HEST=f1lipud (HEST) /HEST (L*L)*H2(1,1) ;

reshape (HEST(1:LxL),L,L),H1
reshape (HEST (L*L+1:2xL*L) ,L,L) ,H2



9 Appendix C

This Matlab program implements the 2-D rxample.

%Valid 2-D 2-blur blind deconvolution of clown.
%image with 2 spatially-varying PSFs.

clear;load clown.mat;%200X200.Downsample to 48X48.
FX=fft2(X) ; FX=FX;FX(25:202-25,25:202-25)=0;

X=real (ifft2(FX));X=X(4:4:193,4:4:193);

%Segment 48X48 superimage X into 9 16X16 images X2.
for K1=1:3;K11=[1:16]+(K1-1)*16;

for K2=1:3;K21=[1:16]+(K2-1)*16;
K3=(K1-1)+(K2-1) *3+1;
X2(1:16,1:16,K3)=X(K11,K21) ;end;end;

%Segment each 16X16 image X2 into 16 4X4 images X3.
for K=1:9;for K1=1:4;K11=[1:4]+(K1-1)*4;

for K2=1:4;K21=[1:4]+(K2-1)*4;K3=(K1-1)+(K2-1) *4+1;
X3(1:4,1:4,K3,K)=X2(K11,K21,K) ;end;end;end;
%#Segment PSFs H,G into spatially-varying PSFs H2,G2.

H=[3141509;265358;979323;84626 4];
H=[H;3 383 27;95028 8];
G=[419716;939937;5115282;09749 4];
G=[G;4 59 230;781640];

for K1=1:3;K11=[1:2]+2%(K1-1);

for K2=1:3;K21=[1:2]+2*(K2-1) ;K3=(K1-1)+(K2-1) *3+1;
H2(1:2,1:2,K3)=H(K11,K21);

G2(1:2,1:2,K3)=G(K11,K21) ;end;end;

%Valid 2D convs of images w/ spatially-varying PSFs.
%Want to do this: Y%for K=1:9;
%Y(1:15,1:15,K)=conv2(X2(:,:,K),H2(:,:,K),’valid’);
%end ; %but gives wrong answer! But this does work:
%Y1l=conv2(X2(:,:,7),H2(:,:,7),’valid’);Y1(13:15,9:12)
%No idea why this is. So implement using matrices.
HZ=zeros(3,4);

for K=1:9;H2(1:2,1:2,K)=H2(1:2,1:2,K)’;
H11(1:3,1:4,K)=[H2(2,1,K) H2(1,1,K) 0 O;...

0 H2(2,1,K) H2(1,1,K) 0;0 0 H2(2,1,K) H2(1,1,K)];
H12(1:3,1:4,K)=[H2(2,2,K) H2(1,2,K) 0 0;0 ...
H2(2,2,K) H2(1,2,K) 0;0 0 H2(2,2,K) H2(1,2,K)];
HH1(1:9,1:16,K)=[H12(:,:,K) H11(:,:,K) HZ HZ;HZ ...
H12(:,:,K) H11(:,:,K) HZ;HZ HZ H12(:,:,K) H11(:,:,K)];
G2(1:2,1:2,K)=62(1:2,1:2,K)’;%2nd PSF matrices.
G11(1:3,1:4,K)=[G2(2,1,K) G2(1,1,K) 0 O;...

0 G2(2,1,K) G2(1,1,K) 0;0 0 G2(2,1,K) G2(1,1,K)];
G12(1:3,1:4,K)=[62(2,2,K) G2(1,2,K) 0 0;0 ...
G2(2,2,K) G2(1,2,K) 0;0 0 G2(2,2,K) G2(1,2,K)];
GG1(1:9,1:16,K)=[G12(:,:,K) G11(:,:,K) HZ HZ;HZ ...
G12(:,:,K) G11(:,:,K) HZ;HZ HZ G12(:,:,K) G11(:,:,K)];
end;%Use matrices to compute valid 2-D convolutions.
%Unwrap subimages into columns.

for K=1:9;XX=[];for K3=1:16;
X4=X3(1:4,1:4,K3,K);X5=X4(:) ;XX=[XX X5];end;
X6(1:16,1:16,K)=XX;

end;%Assemble blurred images.

for K=1:9;YY(1:9,1:16,K)=HH1(:,:,K)*X6(:,:,K);
27(1:9,1:16,K)=GG1(:,:,K)*X6(:,:,K);end;

for K=1:9;for K3=1:16;
Y3(1:3,1:3,K3,K)=reshape (YY(1:9,K3,K
Z3(1:3,1:3,K3,K)=reshape (ZZ(1:9,K3,K
for K1=1:3;K11=[1:3]+(K1-1)*3;

for K2=1:3;K21=[1:3]+(K2-1)*3;K3=(K1-1)+(K2-1) *4+1;
Y2(K11,K21,K)=Y3(1:3,1:3,K3,K);
Z2(K11,K21,K)=23(1:3,1:3,K3,K) ;end;end;end;

for K1=1:3;K11=[1:9]+(K1-1)*9;

for K2=1:3;K21=[1:9]+(K2-1)*9;
K3=(K1-1)+(K2-1) *3+1;

Y(K11,K21)=Y2(:,:,K3);
Z(K11,K21)=22(:,:,K3);end;end;

),3,3);
),3,3);end;

figure,imagesc(Y),colormap(gray),axis off

title (’BLURRED IMAGE USING PSF #1°)
figure,imagesc(Z),colormap(gray) ,axis off

title (’BLURRED IMAGE USING PSF #2°)

%Finished with problem setup (finally!)

%GOAL: Compute HEST and GEST and XEST from Y and Z,

for K=1:9;%Find left null vector of [ZZ;YY].

[US Vl=svd([ZZ(:,:,K);YY(:,:,K)]?);N(:,1)=V(:,15);
N11=[N(1,1) N(2,1) N(3,1) 0;0 N(1,1) N(2,1) N(3,1)];
N21=[N(4,1) N(5,1) N(6,1) 0;0 N(4,1) N(5,1) N(6,1)];
N31=[N(7,1) N(8,1) N(9,1) 0;0 N(7,1) N(8,1) N(9,1)];
NZ=zeros(2,4);A1=[N11 N21 N31 NZ;NZ N11 N21 N31];
N12=[N(10,1) N(11,1) N(12,1) 0;0 N(10,1) N(11,1) N(12,1)];
N22=[N(13,1) N(14,1) N(15,1) 0;0 N(13,1) N(14,1) N(15,1)];
N32=[N(16,1) N(17,1) N(18,1) 0;0 N(16,1) N(17,1) N(18,1)];
NZ=zeros(2,4);A2=[N12 N22 N32 NZ;NZ N12 N22 N32];
#Compute estimates of 2 spatially-varying PSFs.

[U S Vl=svd([A1;A2]°);H1EST=V(:,8);
H1EST=flipud (H1EST) /H1EST(4)*G2(1,1,K) ;4Fix scale factor.
HEST(1:2,1:2,K)=reshape(H1EST(1:4),2,2);%Estimate 1st PSF.
GEST(1:2,1:2,K)=reshape (H1EST(5:8),2,2);%Estimate 2ns PSF.
%Form matrices HH1 and HH2 using HEST and GEST.
HEST(1:2,1:2,K)=HEST(1:2,1:2,K)’;
H11EST(1:3,1:4,K)=[HEST(2,1,K) HEST(1,1,K) 0 O;...

0 HEST(2,1,K) HEST(1,1,K) 0;0 O HEST(2,1,K) HEST(1,1,K)];
H12EST(1:3,1:4,K)=[HEST(2,2,K) HEST(1,2,K) 0 0;0 ...
HEST(2,2,K) HEST(1,2,K) 0;0 0 HEST(2,2,K) HEST(1,2,K)];
HH1EST(1:9,1:16,K)=[H12EST(:,:,K) H11EST(:,:,K) HZ HZ;...
HZ H12EST(:,:,K) H11EST(:,:,K) HZ;HZ HZ H12EST(:,:,K)...
H11EST(:,:,K)]1;

GEST(1:2,1:2,K)=GEST(1:2,1:2,K)?;%2nd PSF matrices.
G11EST(1:3,1:4,K)=[GEST(2,1,K) GEST(1,1,K) 0 0O;...

0 GEST(2,1,K) GEST(1,1,K) 0;0 O GEST(2,1,K) GEST(1,1,K)];
G12EST(1:3,1:4,K)=[GEST(2,2,K) GEST(1,2,K) 0 0;0 ...
GEST(2,2,K) GEST(1,2,K) 0;0 O GEST(2,2,K) GEST(1,2,K)];
GG1EST(1:9,1:16,K)=[G12EST(:,:,K) G11EST(:,:,K) HZ HZ;...
HZ G12EST(:,:,K) G11EST(:,:,K) HZ;HZ HZ G12EST(:,:,K)...
G11EST(:,:,K)]1;

%K&actual values of PSFs are displayed as integers.
%Computed values of PSFs are displayed to 4 digits.
X,H2(:,:,K)’,HEST(:,:,K),G2(:,:,K)?,GEST(:,:,K),end;

%Noe compute XEST from HEST & GESY & Y & Z.

WlNow compute image using reconstructed PSFs and

hwavelet transform of image, which is sparse.
W=sqrt(2)/2%[1,-1,0,0;0,0,1,-1];%Haar wavelet
w=[w;.5,.5,-.5,-.5;.5,.5,.5,.5];%transform

WW=kron(W,W) ;

for K=1:9;%Y=H*X -> Y=(H*WW’)* (WW*X) .
YYY(:,:,K)=[YY(:,:,K);ZZ(:,:,K)];
HHH(:,:,K)=[HH1(:,:,K);GG1(:,:,K)I*WW’;
X6HAT(1:16,1:16,K)=pinv(HHH(:,:,K))*YYY(:,:,K);

%Inverse wavelet transform.
X6HAT(:,:,K)=WW’>*X6HAT(:,:,K);

%hAssemble subimage estmates into superimage.

for K3=1:16;X3HAT(1:4,1:4,K3,K)=...

reshape (X6HAT(1:16,K3,K) ,4,4) ;end;

for Ki1=1:4;K11=[1:4]1+(K1-1)%4;

for K2=1:4;K21=[1:4]+(K2-1)*4;

K3=(K1-1)+(K2-1) *4+1;
X2HAT(K11,K21,K)=X3HAT(1:4,1:4,K3,K) ;end;end;end;

for K1=1:3;K11=[1:16]+(K1-1)*16;

for K2=1:3;K21=[1:16]+(K2-1)*16;

K3=(K1-1)+(K2-1) *3+1;
XHAT(K11,K21)=X2HAT(:,:,K3);end;end;
figure,imagesc (XHAT) ,colormap(gray) ,axis off

title (’RECONSTRUCTED IMAGE’)



